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In-medium chiral symmetry breaking in confining potential models of
QCD is examined. Ring diagrams are proposed as a resolution to the in-
frared divergence problem in the gap equations. We present the first deter-
mination of the temperature-density phase diagram for two model systems.
We find that observables and the phase structure of the confinement models
depend strongly on whether vacuum polarisation is accounted for. Finally,
it appears that standard confinement models cannot adequately describe
both hadron phenomenology and in-medium properties of QCD.

PACS numbers: 12.60.Nz, 12.38.–t

1. Introduction

The properties of QCD at finite temperature and density find applica-
tions in topics as diverse as the nature of proto-neutron stars, early universe
cosmology, and experiment at RHIC and the LHC. Unfortunately, many
of the properties of interest are nonperturbative, and, with the exception of
lattice techniques, tools for dealing with nonperturbative field theory remain
rudimentary. Here we apply Schwinger–Dyson techniques to simple confine-
ment models in an attempt to determine their applicability to in-medium
QCD and to shed light on a longstanding issue concerning IR divergences.

2. Confinement models and the gap equation

We examine the properties of two simple models of confinement that are
motivated by QCD in Coulomb gauge. Upon neglecting transverse gluons,
the QCD Hamiltonian takes the form [1,2]
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H =
∫
ψ̄(−i~γ · ∇+m)ψ + 1

2

∫
ρa(x)V (x− y)ρa(y) , (1)

where ρa = ψ†T aψ is the colour quark current and T a is a generator of
SU(N). We consider the linear confinement potential

V (~r) = −3
4
br , V (~q) =

6πb
q4

, (2)

and the Richardson potential

V (~q) =
3
4

4π
q2β0log(1 + q2/Λ)

(3)

with β0 = 11− 2
3nf , Λ = bβ, and nf is the number of quark flavours. The

string tension is denoted b and its phenomenological value is approximately
0.2 GeV2.

The Schwinger–Dyson equation for the full fermion propagator is repre-
sented in Fig. 1.
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Fig. 1. Schwinger–Dyson equation for the full fermion propagator in potential mod-
els. Minus signs are not made explicit.

A simple substitution of the tree order approximation to the fermion four-
point vertex yields correction terms due to dressed vacuum polarisation and
vertex correction. If one neglects vertex correction diagrams, it is possible
to sum all dressed vacuum polarisation insertions by rewriting the equation
These coupled equations, called the gap equations, form the starting point
for our investigation of dynamical mass generation (see Fig. 2). Note that
the vacuum polarisation fermion loop of the second equation utilises dressed
fermion propagators.
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Fig. 2. Gap equations: summing polarisation insertions in the truncated
Schwinger–Dyson equations.
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We shall employ the imaginary time formalism to perform the finite
temperature and density calculation of the gap equations. In order to solve
the coupled integral equations consistently, we make the following ansatz for
the in-medium inverse fermion propagator

S−1(k) = i(ωn − iµ̃)γ0 − ~γ · ~kA−B . (4)

The scalars µ̃, A, and B are functions of k0 and |~k|. The gap equations then
read

A(~p) = 1 +
CF

2

∫
d3q

(2π)3
Vring(~p− ~q)Aq

Eq

~p · ~q
p2

[1− n(q)− n̄(q)] ,

B(~p) = m+
CF

2

∫
d3q

(2π)3
Vring(~p− ~q) Bq

Eq
[1− n(q)− n̄(q)] ,

µ̃(~p) = µ+
CF

2

∫
d3q

(2π)3
Vring(~p− ~q)[n(q)− n̄(q)] ,

E2
p = A2

p p
2 +B2

p , (5)

where we have introduced the colour factor CF = (N2 − 1)/(2N), and

n(p) =
1

exp(β(Ep − µ̃)) + 1
, (6)

n̄(p) =
1

exp(β(Ep + µ̃)) + 1
, (7)

with
Vring(q0, ~q) =

V (~q)
1−Π(q0, ~q)V (~q)

, (8)

and

Π(k0, k) =
1

2β
nf

∑
n

∫
d3p

(2π)3
Tr[γ0S(k)γ0S(p+ k)] . (9)

We remark that the gap equation takes on this form only in the case where
the frequency dependence of the ring potential is neglected.

3. Numerical results

Our results will be presented as plots of the dynamical mass at zero
momentum as a function of chemical potential and temperature: M [k →
0, T, µ]. Thus we determine the phase structure of the contact and confine-
ment models. As far as we know these are the first computations of these
phase diagrams, even in the case of the bare potential. The computation for
the ring potentials are also new.
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As mentioned above, the gap equations contain an IR divergence in the
scalars A and B. The ratio is IR finite, however, the individual scalar
functions appear in the expressions for n and n̄, and hence the IR divergence
cannot be avoided at finite temperature. With the prescription suggested by
Alkofer et al. [4] (which amounts to replacing A in n and n̄ by 1) we obtain
the results of Fig. 3.

Fig. 3. Dynamical mass versus temperature and density for the bare linear AAL
confinement model. Quantities in GeV.

A more physical way to deal with the infrared divergence problem is to
include the ring contribution in our gap equations [5]. As demonstrated
in Fig. 4, including the ring diagrams causes the dynamical mass, critical
temperature, and critical chemical potential to drop to even more unrealistic
values. More details and further studies are contained in Ref. [3].

We remark that the vacuum polarisation function introduces explicit
temperature and density dependence to the quark interaction, which raises
the possibility of explicit quark deconfinement in the model. It is possible
that this dependence causes the potential to deconfine at a critical tempera-
ture. However, it is more likely that the potential deconfines for all nonzero
temperature. Indeed, in perturbation theory one can approximate the ring
potential as

Vring(q, T, µ = 0) ≈ 6πb
q4 + πbT 2

. (10)
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Fig. 4. Dynamical mass versus temperature and density for the linear static long
wavelength ring approximation. Quantities in GeV.

The Fourier transform of this potential is linear when T = 0. When
T > 0 the potential is linear at small distances, has a transition region at r ∼
(πbT 2)−1/4, and approaches zero at large distances, so that deconfinement
is natural, although not sudden. A careful analysis of deconfinement awaits
a study of QCD.

4. Discussion and conclusion

For the bare linear model with the AAL infrared prescription we confirm
the existence of a second order phase transition at small chemical poten-
tial. For chemical potential larger than µ? ≈ 43 MeV the phase transition
becomes first order. The appearance of any phase transition is somewhat
surprising, since it is in conflict with the reasonable expectations of Davis
and Matheson [6]. The numerical values for the dynamical mass, chiral
restoration temperature and density, and chiral condensate are all in agree-
ment with QCD expectations if the string tension is increased to a value
of 1.8 GeV2. Unfortunately, this is in severe conflict with well-established
quark model phenomenology and lattice gauge results that require a string
tension of approximately 0.2 GeV2. It is thus apparent that the simplest con-
finement models cannot both reproduce thermodynamic and spectroscopic
quantities with any reliability. Of course, this conclusion depends on the ap-
proximations we have made. However, the large discrepancy seems difficult
to overcome and we expect that simple confinement models are incapable of
describing in-medium properties of QCD.
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