
Vol. 3 (2010) Acta Physica Polonica B Proceedings Supplement No 4

GLUEBALLS, GLUON CONDENSATE,
AND PURE GLUE QCD BELOW Tc
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A quasiparticle description of pure glue QCD below Tc is presented. It
is shown that the strong decrease of the gluon condensate combined with
the increasing thermal width of the lightest glueballs at T . Tc might be
the trigger of the phase transition. The proposed model compares very well
with recent lattice data.

PACS numbers: 12.38.Mh, 12.39.Mk

1. Introduction

A key observable of finite temperature QCD is its equation of state (EoS),
that can be computed by resorting to either effective models or lattice QCD
calculations. In particular, the EoS of pure glue QCD has been computed
on the lattice using gauge groups ranging from SU(3) to SU(8) [1,2]. Many
other calculations of the QCD EoS have also been performed at nonzero
quarks flavors and chemical potential, see e.g. the review [3]. Currently,
lattice data have a particular status since they are often used to fit other
model’s parameters when experimental data are lacking.

Among the existing phenomenological approaches, quasiparticle models
rely on the assumption that the quark gluon plasma (QGP) can be seen as a
gas containing the relevant hadronic degrees of freedom: deconfined quarks
and gluons above the critical temperature, Tc, but rather a hadron gas before
the phase transition. The present work aims at describing the pure glue EoS
below Tc, which has not been as intensively studied as above Tc.

Below Tc, the pure glue hadronic matter might be similar to a noninter-
acting glueball gas — notice that the scattering amplitudes between glue-
balls scales in 1/N2

c instead of 1/Nc for mesons. Following Bose–Einstein
statistics, the only relevant contribution to the EoS is thus the one of the
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lowest-lying glueballs because of the statistical suppression in e−mg/T , mg

being the glueball mass. However, by using typical values for the low-lying
glueball masses in a glueball gas model, one fails to reproduce the strong in-
crease of the EoS near the phase transition [4,5]. The only proposal leading
to a model in agreement with the lattice EoS is so far the one of [5], where a
high-lying glueball spectrum of Hagedorn-type is assumed. But, the Hage-
dorn spectrum relies on a string-theoretical picture of hadrons, e.g. closed
strings for glueballs. In view of the many models reproducing the lattice
spectrum at zero temperature by assuming totally different frameworks, it
might be of interest to see whether an alternative way of understanding the
early stages of the pure glue phase transition can be found or not. As it
will be shown, giving a summary of [6], two ingredients are needed. First,
a significant reduction of the glueball masses near Tc. Second, the nontriv-
ial contribution of the gluon condensate to the trace anomaly, especially its
brutal reduction near the phase transition.

2. Glueball masses and the pressure

Glueball masses at finite temperature have already been computed on
the lattice, see in particular [7]. The basic conclusion of this work is twofold:
On one hand, if the temporal glueball correlator is fitted assuming glueball
states with zero width, then the 0++ and 2++ pole masses are found to
significantly decrease approaching Tc. On the other hand, when a Breit–
Wigner fit is chosen, the glueball masses are found to be constant from
T = 0 to Tc with an increasing thermal width near Tc. Such a behavior
might be a general feature of hadrons: Their progressive “dissolution” in the
medium near the deconfinement temperature should enhance their width.
The pole mass, mg(T ), and the Breit–Wigner mass, m̄g(T ), and thermal
width, Γg(T ), are actually linked as follows [7]

mg(T ) ≈ m̄g(T )− 2T +
√

4T 2 − Γg(T )2 . (1)

As shown in the left panel of Fig. 1, the pole masses computed in [7] are
well described by the form (1) with m̄g(T ) = m0

g and Γg(T ) = 0 for T lower
that some temperature Tg but equal to bg (T − Tg) for Tg < T < Tc. So the
thermal broadening of the glueballs generates a pole-mass reduction.

From large Nc arguments, the interactions between glueballs can be ne-
glected in a first approximation. The pressure of a noninteracting gas of
glueballs with mass mg and spin Jg corresponds to that of an ideal Bose–
Einstein gas

pg = −(2Jg + 1)T
2π2

∞∫
0

dk k2 ln
(

1− e−
√
k2+m2

g/T
)
. (2)
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Fig. 1. Left: Scalar and tensor glueball masses computed through a pole-mass fit
in [7] (symbols), compared to a fit of the form (1). See [6] for the values of the
fit parameters. Right: Pressure computed in pure glue SU(3) lattice QCD and
normalized to κSB = 45/8π2, taken from [2] (full circles). The lattice data are
compared to Eq. (3) using mg = m0

g (dashed line), mg = mg(T ) given by Eq. (1)
(dotted line), and the full model in which the term (6) is added (solid line).

In such a framework, only the glueball mass appears in the computation of
the EoS, but the effects of the increasing thermal width should be taken
into account. We choose here to adopt a procedure that is widespread in
quasiparticle models: We consider that all physical effects can be absorbed
in a redefinition of the quasiparticle masses. Since a glueball with a constant
mass and an increasing thermal decay width can be described effectively as a
glueball with a zero width and a decreasing pole mass, the pole mass mg(T )
will be used hereafter.

Starting from Eq. (2), the pressure of the QCD matter below Tc is then
given by p =

∑
g pg, the sum running over all the glueball states. A Hage-

dorn spectrum is not assumed, thus only the lowest-lying glueballs will sig-
nificantly contribute because the statistical suppression in e−mg/T is not
balanced by the exponentially rising number of states with respect to mg.
Moreover, the higher-lying glueballs would contribute if mg/T was of the
order of unity, but mg/Tc � 1 even for the 0++ glueball. We thus take

p ≈ p0++ + p2++ . (3)

Results obtained from this last equation are shown in the right panel of
Fig. 1 and compared to the lattice data of [2]. The conclusions are the
following. First, using a glueball gas with constant masses fails to reproduce
the observed increase of pressure near Tc. Second, using the temperature-
dependent masses greatly improves the agreement with lattice QCD and is
a first argument in favor of the scenario proposed here. Remark that p(Tc)
is underestimated; it will be shown in the next section that the contribution
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coming from the gluon condensate is able to cure this problem. Concerning
the higher-lying glueballs, it can be computed that, if the mass reduction
mechanism does not cause those glueballs to become lighter than the tensor
one, the 0−+ contribution shifts the pressure of less than 7% while the
heavier states contribution is even smaller. Thus only the scalar and tensor
glueballs may be considered in a first approximation.

3. Gluon condensate and the trace anomaly

The next step is now the computation of the trace anomaly, defined
from (3) by

∆̄ = T 5∂T

( p

T 4

)
. (4)

A look at Fig. 2 clearly shows that our model with mg(T ), although sat-
isfactorily reproducing the lattice pressure at low T , severely underesti-
mates the trace anomaly near the phase transition. This situation can

Fig. 2. Left: Same as the right panel of Fig. 1 but for the trace anomaly. The dashed
line is the glueball contribution (4), while the solid line comes from Eq. (5). Right:
Trace anomaly contribution in which ce(T ) has been taken from the lattice study [9]
(full circles). The fitted curve used in our calculations is given for comparison (solid
line); its expression can be found in [6].

be clarified by taking into account the nontrivial role of the gluon con-
densate. It is indeed known that the gluon condensate at temperature T ,
〈G2〉T = −〈βgG

a
µνG

µν
a (T )〉, contributes to the QCD trace anomaly as ∆G2 =

〈G2〉0 − 〈G2〉T [8]. Thus the total trace anomaly, ∆, should rather be

∆ = ∆̄+∆G2 . (5)

Writing the gluon condensate as the sum of a magnetic and an electric part,
i.e. 〈G2〉T = 〈G2

e〉T +〈G2
m〉T in Euclidean space, it appears from lattice QCD

simulations that 〈G2
m〉T ≈ 〈G2

m〉0, and that 〈G2
e〉T is such 〈G2

e〉0 ≈ 〈G2〉0/2
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but then falls very quickly near Tc to reach a zero value just after the phase
transition [9]. Consequently, one expects ∆G2 = 〈G2〉0[1 − ce(T )]/2, where
ce(T ) = 〈G2

e〉T /〈G2
e〉0 can be known from lattice computations [9].

Since ce(T ) is only known at a few temperatures from the lattice study [9],
we have fitted it for convenience, using an ansatz whose explicit form can be
found in [6]. A look at the right panel of Fig. 2 shows that the fit is very good,
while it can be checked in Fig. 2 that the trace anomaly (5) fits the lattice
data very well. Typical values Tc = 265 MeV and 〈G2〉0 =0.030 GeV4 have
been used [10]. In our opinion, the agreement between the needed value
of the gluon condensate in our model and the one theoretically expected
from independent lattice calculations is a relevant check of the mechanism
presented here describing the phase transition.

The coherence of our scenario requires the gluon condensate contribution
to the pressure to be computed from the thermodynamical relation (4) and
then to be added to the glueball pressure. One has thus

pG2 = T 4

T∫
0

∆̃G2(x)
x5

dx , (6)

and
p = p0++ + p2++ + pG2 . (7)

It is readily observed in the right panel of Fig. 1 that, near Tc, the total
pressure (7) is no longer underestimated and reaches an excellent agreement
with the lattice data.

Since in Ref. [2], to which our model is compared, the energy density
as well as the entropy density are obtained as linear combinations of the
pressure and trace anomaly following standard thermodynamical relations,
it is enough for our purpose to have considered p and ∆.

4. Conclusion and large Nc limit

A new way of understanding the pure glue QCD equation of state below
Tc has been proposed. The basic idea is that the pure glue hadronic matter
consists in both a glueball gas and a gluon condensate part. As a consequence
of their increasing thermal decay width, the glueball masses are significantly
reduced near Tc. This effect has also to be combined with the vanishing of the
electric gluon condensate at the critical temperature. In order to illustrate
the proposed scenario, lattice data have been used as numerical inputs in
the model: The glueball masses and the gluon condensate values have been
taken from [4] and [9] respectively. Those data, when incorporated into
computations, lead to an equation of state in very good agreement with that
computed in Ref. [2], thus providing an a posteriori coherent interpretation
of various independent existing results in finite-temperature QCD.
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Finally, what can be expected in the large Nc limit? Above Tc, the
dominant contribution to the equation of state should come from deconfined
gluons, whose N2

c color degrees of freedom cancel the κSB factor scaling as
1/N2

c , leading to globally constant observables with respect toNc as observed
in [2]. Below Tc, all glueballs are in a color singlet and their masses scale as
1 while the gluon condensate scales as N2

c . The trace anomaly and pressure
at large Nc are then expected to read ∆ ≈ ∆G2 and p ≈ pG2 respectively
in our model. Thus, we predict that the pressure below Tc will be strongly
suppressed at large Nc while the trace anomaly will decrease only slightly
once normalized to κSB. It can be hoped that future studies of glueball and
glueball condensate properties at finite-temperature and large Nc will allow
a more accurate validation of the ideas developed in this work.
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