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ROLE OF MONOPOLES IN A GLUONIC PLASMA∗
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The role of color-magnetic monopoles in a pure gauge plasma at high
temperature T > 2Tc is considered. In this temperature regime, monopoles
can be considered heavy, rare objects embedded into matter consisting
mostly of the usual “electric” quasiparticles, quarks and gluons. The gluon–
monopole scattering is found to hardly influence thermodynamic quantities,
yet it produces a large transport cross-section, significantly exceeding that
for pQCD gluon–gluon scattering up to quite high T . This mechanism
keeps viscosity small enough for hydrodynamics to work at LHC.

PACS numbers: 12.38.Mh, 12.39.–x

1. Introduction

Creating and studying Quark Gluon Plasma (QGP) in the laboratory has
been the goal of experiments at CERN SPS and recently at the Relativistic
Heavy Ion Collider (RHIC) facility in Brookhaven National Laboratory, soon
to be continued by the ALICE Collaboration at the Large Hadron Collider
(LHC). RHIC experiments have revealed robust collective phenomena in
the form of radial and elliptic flows, which turned out to be quite accurately
described by near-ideal hydrodynamics. QGP thus seems to be the most
perfect liquid known, with the smallest viscosity-to-entropy ratio η/s. One
of the central questions is how sQGP with “near-perfect fluidity” will change
into a weakly coupled wQGP with increasing T . In view of the next round
of heavy ion experiments at LHC, a quite urgent question is what transport
properties are expected to be observed there, at temperatures reaching about
twice those reached at RHIC. To answer this question, one has to understand
where the “perfect fluidity” of QGP comes from.

Recently, the electric-magnetic duality has been proposed, and used to
explain unusual properties of the QGP [1]: in this so-called “magnetic sce-
nario”, the near-Tc region is dominated by magnetic monopoles. Another line
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of work based on lattice monopoles has led Chernodub and Zakharov [2] at
the same time to a very similar conclusion. An important feature of this
scenario is the opposite running of the electric coupling e and the magnetic
one g, induced by the Dirac condition eg = const. As recently shown in [3],
this feature has been dramatically confirmed by the behavior of the lat-
tice correlation functions [4], which indeed display monopole–monopole and
antimonopole–monopole correlations increasing with T . As shown in [3],
those correlations are well described by a picture of classical Coulomb gas.
The main input in those calculations is the magnetic Coulomb coupling g
growing with T . Furthermore, it was shown to be simply the inverse of the
gauge coupling e, as Dirac predicted. We consider the correlations observed
in [4] to be a decisive confirmation of the existence of the long-distance mag-
netic Coulomb field of the monopoles. It is natural to investigate the role
played by these objects in the QGP [5–10]: we therefore address here the
issue of QGP transport properties in the “magnetic scenario” framework.
We move away from the phase transition region to higher temperatures,
where QGP is still dominated by the usual electric quasiparticles — quarks
and gluons — and the coupling is moderately small. Our goal is to study
the interaction between electric and magnetic sectors. Our main result is
the explicit solution of the problem of quantum gluon–monopole scattering,
from which we calculate the corresponding transport cross-sections. This
will allow us to get a temperature-dependent estimate of the ratio η/s.

2. Quantum gluon–monopole scattering

The problem of quantum gluon–monopole scattering is solved in the
point-like monopole approximation. In this case, and for j 6= 0, the equations
for the radial functions Tjα(ξ) reduce to generalized Bessel-like equations
with noninteger index j′ = −1/2 [−1 +

√
(2j + 1)2 − 4n2], where n = eg is

the product of electric and magnetic couplings and j is the total angular
momentum quantum number1:

T ′′jα(ξ)−
[
−ω2 + 1 +

j(j + 1)− n2

ξ2

]
Tjα(ξ) = 0 . (1)

The index α runs from 1 to 9 and indicates all possible combinations of
charge and spin polarization for gluons. After gauge fixing, three combina-
tions turn out to be unphysical, and only six survive. The radial solution of
the gluon–monopole scattering is easy; the complications reside in the an-
gular functions. In fact, classically the gluon moves on the surface of a cone;

1 The point-like monopole approximation is justified by the information about the
monopole size that we obtain from the lattice, which indicate a monopole radius of
∼ 0.15 fm [11].
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the angular functions therefore are modified vector spherical harmonics that
describe the conical motion in the classical limit of large angular momentum.
The scattering phase that we obtain from Eq. (1) is δj′ = −j′ π2 , independent
of energy. This feature is very important, since the contribution of this kind
of scattering to thermodynamics is given by the Beth–Uhlenbeck formula

δMm =
T

π

∑
j

(2j + 1)
∫
dk
dδj
dk

f(k, T ) (2)

which vanishes identically for a constant scattering phase. Therefore, we find
that the gluon–monopole scattering does not contribute to thermodynamics.
There is an exception to this result, for j = 0. In this case, the gluon can
penetrate the monopole core and form bound states. We do not discuss this
case here, for all details we refer the reader to Ref. [5].

3. Transport cross-section: results and conclusions

The scattering amplitude f(θ) is given by the following formula:

2ikf(θ)n,ν =
jmax∑
j=|ν|

(2j + 1)eiπ(j′−j)d
(j)
ν,−ν(θ) , (3)

where ν = n + σ =
(
~T · r̂

)
+
(
~S · r̂

)
= −J3. The sum over j has an up-

per cutoff jmax: in matter there is a finite density of monopoles. A sketch
of the setting, assuming strong correlation of monopoles into a crystal-like
structure, is shown in the left panel of Fig. 1. A “sphere of influence of
one monopole” (the dotted circle) gives the maximal impact parameter to
be used. As a result, the impact parameter is limited from above by some
bmax, which implies that only a finite number of partial waves should be
included. The range of partial waves to be included in the scattering am-
plitude can be estimated as jmax = 〈px〉n−1/3

m /2 ∼ aT ∼ 1/e2(T ) ∼ log(T ).
Since at asymptotically high T the monopole density nm ∼ (e2T )3 is small
compared to the density of quarks and gluons ∼ T 3, jmax asymptotically
grows logarithmically with T . So, only in the academic limit T → ∞ one
gets jmax → ∞ and the usual free-space scattering amplitudes calculated
in [12] where all partial waves are recovered. However, in reality we have to
recalculate the scattering, retaining only several lowest partial waves from
the sum. Taking the lattice results on the monopole density as a function of
the temperature [4], we estimate jmax ' 6 in our temperature regime. This
dramatically changes the angular distribution, by strongly depleting scat-
tering at small angles and enhancing scattering backwards. This is evident
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Fig. 1. Left: A charge scattering on a 2-dimensional array of correlated monopoles
(open points) and antimonopoles (closed points). The dotted circle indicates a
region of impact parameters for which scattering on a single monopole is a rea-
sonable approximation. Right: Integrand of the transport cross-section g(θ) =
(1 − cos(θ))|f(θ)|2 with only 6 lowest partial waves included, for a gluon with
n = 0, ν = ±1, n = ±1, ν = 0 and n = ±1, ν = ±2. The strong peak backwards
is due to the presence of the cutoff jmax.

in the right panel of Fig. 1, where we show the angular distribution of the
integrand of the transport cross-section σt:

(σt)n,ν =

1∫
−1

d cos θ(1− cos θ)|f(θ)n,ν |2 . (4)

The integrand exhibits a strong peak backwards, which would disappear in
the absence of jmax.

We now proceed to evaluate the scattering rate of gluons on monopoles:

ẇgm
T

=
〈nm(σt)gm〉

T
, (5)

where the 〈...〉 indicates an average over the incoming gluon. The gluon
density has the following form:

ng(T ) =
8π

(2π)3

∫
k2dk

[
2

exp (βεk)−1
+

2
exp (βεk) exp (iβA3

0)−1

+
2

exp (βεk) exp (−iβA3
0)−1

+
1

exp (βεk) exp (2iβA3
0)−1

+
1

exp (βεk) exp (−2iβA3
0)−1

]
=

4π
(2π)3

∫
k2dkρg(k, T ) , (6)
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where we have taken into account the suppression of electric particles due to
the coupling with the Polyakov loop (see for example [13]). In the average
over the incoming gluon, we have to take this suppression into account by
integrating over ~k with the weight ρg(k, T ). We show ẇgm/T in the left
panel of Fig. 2 (the red, continuous line). Also shown is the same quantity
for the gg scattering process (black, dotted line). The approximate relation
of the scattering rate to viscosity/entropy ratio is (η/s) ≈ (T/5ẇ). We plot
η/s in the right panel of Fig. 2. We observe a qualitative agreement between
our results and the experimental value for η/s observed at RHIC, which is
indicated in the right panel of Fig. 2 as a box (green on line). Our present
results, however, deal with the purely gluonic sector of QCD only. For a more
quantitative and meaningful comparison with RHIC results, quarks need to
be incorporated in the analysis. Our main finding is that the contribution
of gluon–monopole scattering is very important for transport properties.
While the monopole density may be small, the gm scattering amplitudes
have e2g2 ∼ O(1) coupling instead of small e4 � 1. Furthermore, in our
setting (with a limited number of partial waves j < jmax included) there is
an additional enhancement for large angle (or even backward) scattering. It
follows from this comparison of the gluon–monopole curve with the gluon–
gluon one that the former remains the leading effect till very high T , although
asymptotically it is expected to get subleading. The maximal T expected
at LHC does not exceed 4Tc, where the total η/s ∼ 0.15. This value is well
in the region which would ensure hydrodynamical radial and elliptic flows,
although deviations from ideal hydro would be larger than at RHIC (and
measurable!).
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Fig. 2. Left panel: gluon–monopole and gluon–gluon scattering rate. Right panel:
gluon–monopole and gluon–gluon viscosity over entropy ratio, η/s. The (blue)
dashed curve is the total η/s, which is evaluated from the gg and gm contributions.
The box (green) represents the present estimate of η/s in the RHIC temperature
regime.
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