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Recent work by Chernodub and Ilgenfritz has uncovered nontrivial tem-
perature dependence in the electric–magnetic asymmetry in the
dimension-2 condensate. This asymmetry measures the difference between
the spatial and the temporal components of the 〈A2

µ〉 condensate. Lattice
computations have shown very interesting phenomena. The asymmetry
shows a jump at the deconfinement phase transition, beyond which it ap-
proaches its perturbative value. At temperatures lower than the critical
temperature, it shows an exponential behavior with a mass in the exponent
smaller than the lowest glueball mass. In this talk we present the research
done on this asymmetry, using a generalization of analytical methods de-
veloped to study 〈A2

µ〉. The purpose is to shed more insight on the findings
of Chernodub and Ilgenfritz.

PACS numbers: 12.38.Aw, 11.10.Gh, 12.38.Lg

1. Introduction

Recent years have witnessed a great deal of interest in the possible ex-
istence of mass dimension-2 condensates in gauge theories, see for exam-
ple [1–14] and references therein for approaches based on phenomenology,
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operator product expansion, lattice simulations, an effective potential and
the string perspective. There is special interest in the operator

A2
min = min

U∈SU(N)
V−1

∫
d4x

(
AUµ
)2
, (1)

which is gauge invariant due to the minimization along the gauge orbit.
It should be mentioned that obtaining the global minimum is delicate due
to the problem of gauge (Gribov) ambiguities [15]. As it is well known,
local gauge invariant dimension-2 operators do not exist in Yang–Mills gauge
theories. The nonlocality of (1) is best seen when it is expressed as [16]1

A2
min =

∫
d4x

[
Aaµ

(
δµν −

∂µ∂ν
∂2

)
Aaν

− gfabc
(
∂ν
∂2
∂Aa

)(
1
∂2
∂Ab

)
Acν

]
+O(A4) . (2)

The relevance of the condensate 〈A2
µ〉min was discussed in [1,2], where it was

shown that it can serve as a measure for the monopole condensation in the
case of compact QED.

All efforts so far have concentrated on the Landau gauge ∂µAµ = 0.
The preference for this particular gauge fixing is obvious since the nonlocal
expression (2) reduces to a local operator, more precisely

∂µAµ = 0⇒ A2
min = A2

µ . (3)

In the case of a local operator, the Operator Product Expansion (OPE)
becomes applicable, and consequently a measurement of the soft (infrared)
part 〈A2

µ〉OPE becomes possible. Such an approach was followed in e.g. [8]
by analyzing the appearance of 1/q2 power corrections in (gauge variant)
quantities like the gluon propagator or strong coupling constant, defined
in a particular way, from lattice simulations. Let us mention that already
three decades ago attention was paid to the condensate 〈A2

µ〉 in the OPE
context [17].

Recently, Chernodub and Ilgenfritz [12] have considered the asymmetry
in the dimension-2 condensate. They performed lattice simulations, com-
puting the expectation value of the electric–magnetic asymmetry in Landau
gauge, which they defined as

∆A2 =
〈
g2A2

0

〉
− 1
d− 1

d−1∑
i=1

〈
g2A2

i

〉
. (4)

1 We will always work in Euclidean spacetime.
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At zero temperature, this quantity must, of course, be zero due to Lorentz
invariance2. Necessarily, it cannot diverge as divergences at finite T are
the same as for T = 0, hence this asymmetry is, in principle, finite, and
it can be computed without renormalization, for all temperatures. At high
temperatures, general thermodynamic arguments predict a polynomial be-
havior ∝ T 2, and this is also what the authors of [12] found3. For the
low-temperature behavior, however, one would expect an exponential fall-
off with the lowest glueball mass in the exponent, ∆ ∼ e−mglT . Instead,
they found an exponential with a mass m significantly smaller than mgl.

2. 〈A2
µ〉 and ∆A2 in the LCO formalism

In order to get more insight in the behavior of the asymmetry, we have
investigated it using the formalism presented in [3]. A meaningful effective
potential for the condensation of the Local Composite Operator (LCO) A2

µ

was constructed by means of the LCO method. This is a nontrivial task due
to the compositeness of the considered operator. We consider pure Euclidean
SU(N) Yang–Mills theories with action

SYM =
∫
d4x 1

4(F aµν)2 + Sgf ,

Sgf =
∫
d4x(ba∂µAaµ + c̄a∂µDabµ cb) . (5)

We couple the operator A2
µ to the Yang–Mills action by means of a source J

SJ = SYM +
∫
d4x

(
1
2J(Aaµ)2 − 1

2ζJ
2
)
. (6)

The last term, quadratic in the source J , is necessary to kill the divergences
in vacuum correlators like 〈A2(x)A2(y)〉 for x → y, or equivalently in the
generating functional W [J ], defined as

e−W [J ] =
∫

[fields]e−SJ . (7)

The presence of the LCO parameter ζ ensures a homogeneous renormaliza-
tion group equation for W [J ]. Its arbitrariness can be overcome by making

2 We shall deliberately use the term Lorentz invariance, though we shall be working in
Euclidean space throughout this paper.

3 A perturbative computation gives a positive proportionality constant, in contrary to
what is erroneously [18] found in [12]. The lattice computations for T < 6 Tc find
a negative proportionality constant, so one would expect the real high-temperature
behavior to start yet later.
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it a function ζ(g2) of the strong coupling constant g2, allowing one to fix
ζ(g2) order by order in perturbation theory in accordance with the renor-
malization group equation.

In order to access the electric–magnetic asymmetry, a second source Kµν

is coupled to the traceless part of AaµAaν . This second operator will not
mix with A2

µ itself, which allows control over the renormalization group of
these two operators. Again, a term quadratic in the new source must be
added, introducing a second parameter ω(g2) which can, again, be fixed
order by order in accordance with the renormalization group equation. We
have proven the all-order perturbative renormalizability of this extension of
the formalism using the algebraic method based on the Ward identities [19].

In order to recover an energy interpretation, the term ∝ J2 can be re-
moved by employing a Hubbard–Stratonovich transformation

1 =
∫

[dσ]e−
1
2ζ

R
ddx

“
σ
g
+ 1

2
A2
µ−ζJ

”2

,

1 =
∫

[dϕµν ]e−
1
2ω

R
ddx

“
1
g
ϕ+ 1

2
AµAν−ω kµν

”2

, (8)

with ϕµν a traceless field, leading to the action

S = SYM +
∫
ddx

[
1
2ζ
σ2

g2
+

1
2ζg

σA2
µ +

1
8ζ

(A2
µ)2

+
1

2ω
ϕ2
µν

g2
+

1
2ωg

ϕµνAµAν +
1

8ω
(AaµA

a
ν)2
]
. (9)

Starting from this, it is possible to compute the effective potential V (σ, ϕµν),
where the correspondences

〈σ〉 = −g
2
〈A2

µ〉 , 〈ϕµν〉 = −g
2

〈
AµAν −

δµν
d
A2
λ

〉
(10)

hold.
Now we determine the values of ζ and ω from the renormalization group

equations for the sources J and Kµν . For this, some anomalous dimensions
and renormalization factors have to be computed up to one loop order higher
than the intended loop order we are interested in. We have done this using
the Mincer algorithm. The final result is up to one-loop order

ζ =
N2 − 1
16π2

[
9
13

16π2

g2N
+

161
52

]
,

ω =
N2 − 1
16π2

[
1
4

16π2

g2N
+

73
1044

]
. (11)
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3. Computation and minimalization of the action

The effective potential V (σ, ϕµν) can now be computed using standard
techniques. We have taken the background fields σ and ϕµν to have space–
time independent vacuum expectation values and ϕµν to be the traceless
diagonal matrix diag(A,− 1

d−1A, . . . ,−
1
d−1A).

Computing the effective action up to one-loop order at zero temperature,
yields only the minimum found in [3], which is what we expect. For finite but
still not too high temperatures, the potential can be minimized numerically.
The result is depicted in Fig. 1. We see that the asymmetry rises at low
temperatures, which agrees qualitatively with the findings of [12]. The low-
temperature expansion of ∆A2 reads

∆A2 = (N2 − 1)
g2π2

30

(
1− 85

1044
g2N

(4π)2

)
T 4

m2
, (12)

and there is no correction to 〈A2
µ〉 at this order. Note, that we find a poly-

nomial behavior ∝ T 4/m2 instead of an exponential. This does not agree
with the lattice results, but in [12] the lowest temperatures reached were
T = 0.4 Tc, where our expansion is not valid anymore.
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T�L

MS

-8

-6

-4

-2

Fig. 1. The 〈g2A2
µ〉 condensate (full line) and the asymmetry ∆A2 (dashed line) as

functions of the temperature, in units ΛMS .

At temperatures higher than 0.67ΛMS, the minimum disappears. This
signals a phase transition to the perturbative vacuum. In order to access this
regime, it is possible to expand the effective potential for high temperatures,
which yields

〈
A2
µ

〉
=
(
N2 − 1

) T 2

4
, ∆A2 =

(
N2 − 1

) T 2

12
. (13)
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This is the perturbative result. In order to compute higher-order correc-
tions to this, it is necessary to perform a Hard Thermal Loop resummation,
as a mere one-loop result leads to an imaginary part coming from the tachy-
onic mass caused by the condensate. After resummation, a positive mass
should remain. Work in that direction is forthcoming [20].
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