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We study the QCD phase diagram, in particular we study the critical
points of the two main QCD phase transitions, confinement and chiral
symmetry breaking. Confinement drives chiral symmetry breaking and, due
to the finite quark mass, at small density both transitions are a crossover,
while they are a first or second order phase transition in large density.
We study the QCD phase diagram with a quark potential model including
both confinement and chiral symmetry. This formalism, in the Coulomb
gauge Hamiltonian formalism of QCD, is presently the only one able to
microscopically include both a quark–antiquark confining potential and a
vacuum condensate of quark–antiquark pairs. This model is able to address
all the excited hadrons, and chiral symmetry breaking, at the same token.
Our order parameters are the Polyakov loop and the quark mass gap. The
confining potential is extracted from the Lattice QCD data of the Bielefeld
group. We order to address how the quark masses affect the critical point
location in the phase diagram.

PACS numbers: 12.38.Gc, 12.39.Ki, 11.30.Rd, 12.15.Ff

1. Introduction

Our main motivation is to contribute to understand the QCD phase
diagram [1], for finite T and µ, to be studied at LHC, RHIC and FAIR.
Moreover, our formalism, in the Coulomb gauge Hamiltonian formalism of
QCD, is presently the only one able to microscopically include both a quark–
antiquark confining potential and a vacuum condensate of quark–antiquark
pairs. This model is able to address excited hadrons and chiral symmetry at
the same token, and we recently suggested that the infrared enhancement of
the quark mass can be observed in the excited baryon spectrum at CBELSA
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and at JLAB [2, 3]. Thus the present work, not only addresses the QCD
phase diagram, but it also constitutes the first step to allow us in the future
to compute the spectrum of any hadron, extending, say the Fig. 1 (left)
computed in reference [2] to finite T .
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Fig. 1. Right: A sketch of the QCD Phase Diagram, according to the CBM Collab-
oration at FAIR [1]. It is usually assumed that the critical point for deconfinement
coincides with the critical point for chiral symmetry restoration. Left: First calcu-
lation of excited baryons with a chiral invariant quark model.

Here we address the finite temperature string tension, the quark mass
gap for a finite current quark mass and temperature, and the deconfine-
ment and chiral restoration crossovers. We conclude on the separation of
the critical point for chiral symmetry restoration from the critical point for
deconfinement.

2. Fits for the finite T string tension from
the Lattice QCD energy F1

At vanishing temperature T = 0, the confinement, modelled by a string,
is dominant at moderate distances

V (r) ' π

12r
+ V0 + σr . (1)

At short distances we have the Luscher or Nambu–Gotto Coulomb due to
the string vibration + the OGE Coulomb, however the Coulomb is not
important for chiral symmetry breaking. At finite temperature the string
tension σ(T ) should also dominate chiral symmetry breaking, and thus one
of our crucial steps here is the fit of the string tension σ(T ) from the Lattice
QCD data of the Bielefeld Lattice QCD group [4–8].

The Polyakov loop is a gluonic path, closed in the imaginary time t4
(proportional to the inverse temperature T−1) direction in QCD discretized
in a periodic boundary euclidian Lattice. It measures the free energy F of
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one or more static quarks

P (0) = Ne−Fq/T , P a(0)P̄ ā(r) = Ne−Fqq̄(r)/T . (2)

If we consider a single solitary quark in the Universe, in the confining phase,
his string will travel as far as needed to connect the quark to an antiquark,
resulting in an infinite energy F . Thus the 1 quark Polyakov loop P is a
frequently used order parameter for deconfinement. With the string tension
σ(T ) extracted from the qq̄ pair of Polyakov loops we can also estimate the
1 quark Polyakov loop P (0). At finite T , we use as thermodynamic poten-
tials the free energy F1 and the internal energy U1, computed in Lattice
QCD with the Polyakov loop [4–8]. They are related to the static potential
V (r) = −fdr with F1(r) = −fdr − SdT adequate for isothermic transfor-
mations. In Fig. 2 we extract the string tensions σ(T ) from the free energy
F1(T ) computed by the Bielefeld group, and we also include string tensions
previously computed by the Bielefeld group [9].
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Fig. 2. Top left: The Bielefeld free F1 energy at T < Tc. Top right: Detail of the
string tension fit in the case of T = 0.94Tc. Bottom left: The critical curve for
M/Msat as a function of T/Tc, for T ' Tc it behaves like a square root. Bottom
right: Comparing the magnetization critical curve with the string tension σ/σ0,
fitted from the long distance part of F1, they are quite close.
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We also find an ansatz for the string tension curve, among the order
parameter curves of other physical systems related to confinement, i.e. in
ferromagnetic materials, in the Ising model, in superconductors either in the
BCS model or in the Ginzburg–Landau model, or in string models, to suggest
ansatz for the string tension curve. We find that the order parameter curve
that best fits our string tension curve is the spontaneous magnetization of a
ferromagnet [10], solution of the algebraic equation

M

Msat
= tanh

(
Tc

T

M

Msat

)
. (3)

In Fig. 2 we show the solution of Eq. 3 obtained with the fixed point expan-
sion, and compare it with the string tensions computed from lattice QCD
data.

3. The mass gap equation with finite T and finite
current quark mass m0

Now, the critical point occurs when the phase transition changes to a
crossover, and the crossover in QCD is produced by the finite current quark
massm0, since it affects the order parameters P or σ, and the mass gapm(0)
or the quark condensate 〈q̄q〉. The mass gap equation at the ladder/rainbow
truncation of Coulomb Gauge QCD in equal time reads,

m(p) = m0 +
σ

p3

∞∫
0

dk

2π
IA(p, k, µ)m(k)p− IB(p, k, µ)m(p)k√

k2 +m(k)2
, (4)

IA(p, k, µ) =
[

pk

(p− k)2 + µ2
− pk

(p+ k)2 + µ2

]
,

IB(p, k, µ) =
[

pk

(p− k)2 + µ2
+

pk

(p+ k)2 + µ2
+

1
2

log
(p− k)2 + µ2

(p+ k)2 + µ2

]
.

The mass gap equation (4) for the running mass m(p) is a non-linear inte-
gral equation with a nasty cancellation of Infrared divergences [11–13]. We
devise a new method with a rational ansatz, and with relaxation, to get a
maximum precision in the IR where the equation is nearly almost unstable.
The solution m(p) is shown in Fig. 3 for a vanishing momentum p = 0.

At finite T , one has only to change the string tension to the finite T string
tension σ(T ) [14], and to replace an integral in ω by a sum in Matsubara
Frequencies. Both are equivalent to a reduction in the string tension, σ → σ∗

and thus, all we have to do is to solve the mass gap equation in units of σ∗.
The results are depicted in Fig. 4. Thus at vanishing m0 we have a chiral
symmetry phase transition, and at finite m0 we have a crossover, that gets
weaker and weaker when m0 increases. This is also sketched in Fig. 3.
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Fig. 3. Left: The mass gap m(0) solution of as a function of the quark current mass
m0, in units of σ = 1. Right: Sketch of the effect of m0 on the crossover versus
phase transition of chiral restoration at finite T .
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Fig. 4. Sketches of the saturation of confinement (left), and of the corresponding
crossover in the order parameter P Polyakov loop (right).

4. Chiral symmetry and confinement crossovers with
a finite current quark mass

In what concerns confinement, the linear confining quark–antiquark po-
tential saturates when the string breaks at the threshold for the creation of
a quark–antiquark pair. Thus the free energy F (0) of a single static quark
is not infinite, but is the energy of the string saturation, of the order of the
mass of a meson i.e. of 2m0. For the Polyakov loop we get

P (0) ' Ne−2m0/T . (5)

Thus at infinite m0 we have a confining phase transition, while at finite m0

we have a crossover, that gets weaker and weaker when m0 decreases. This
is sketched in Fig. 4.
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Since the finite current quark mass affects in opposite ways the crossover
for confinement and the one for chiral symmetry, we conjecture that at
finite T and µ there are not only one but two critical points (a point where
a crossover separates from a phase transition). Since for the light u and d
quarks the current mass m0 is small, we expect the crossover for chiral
symmetry restoration critical to be closer to the µ = 0 vertical axis, and
the crossover for deconfinement to go deeper into the finite µ region of the
critical curve in the QCD phase diagram depicted in Fig. 1.

5. Outlook

We soon plan to complete the part of this work which is only sketched
here, i.e. to compute the crossover curves for the chiral symmetry restoration
and for the deconfinement at finite T . This will also require the study of
light hadrons at finite temperature T . Thus we also plan to address the
excited hadron spectrum at finite T , continuing the work initiated with Tim
Van Cauteren, Marco Cardoso, Nuno Cardoso and Felipe Llanes-Estrada.
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