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We study the implications of a light tetraquark on the chiral phase
transition at nonzero temperature T : the behavior of the chiral and four-
quark condensates and the meson masses are studied in the scenario in
which the resonance f0(600) is described as a predominantly tetraquark
state. It is shown that the critical temperature is lowered and the transition
softened. Interesting mixing effects between tetraquark and quarkonium
configurations take place.
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1. Introduction

In the last decades theoretical and experimental work on light scalar
mesons with masses below ∼ 1.8GeV [1] initiated an intense debate about
their nature. Quarkonia, tetraquark and mesonic molecular assignments,
together with the inclusion of a scalar glueball state around 1.5GeV as
suggested by lattice simulations, have been proposed and investigated in
a variety of combinations and mixing patterns [2].

Nowadays evidence toward a full nonet of scalars below 1GeV is mount-
ing: f0(600), f0(980), a0(980), and K∗0 (800). An elegant way to explain
such resonances is the tetraquark assignment proposed long ago by Jaffe [3].
The reversed mass ordering is naturally explained in this way and also de-
cays can be successfully reproduced [4]. Within this context the lightest
scalar resonance f0(600) is interpreted as a predominantly tetraquark state
1/2[u, d][ū, d̄], where the commutator indicates an antisymmetric flavor con-
figuration of the diquark.
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The lightest quark–antiquark state, i.e. the chiral partner of the pion
with flavor wave function n̄n =

√
1/2(ūu+ d̄d), is then predominately iden-

tified with the broad resonance f0(1370). The fact that scalar quarkonia
are p-wave states supports this choice. According to this picture quarkonia
states, together with the scalar glueball, lie above 1 GeV, see Ref. [5] and
references therein.

It is natural to ask how the here outlined scenario affects the physics at
nonzero temperature T . It is in fact different form the usual assumptions
made in hadronic models at T > 0, where the chiral partner of the pion
has a mass of about 600MeV. Moreover, besides the chiral condensate, new
quantities emerge: a tetraquark condensate and the mixing of tetraquark and
quarkonium states in the vacuum and at nonzero T . Remarkably, the mixing
angle increases for increasing T and the behavior of the chiral condensate
is affected by the presence of the tetraquark field. Details can be found in
Ref. [6], on which this proceeding is based.

2. The model

We work with a simple chiral model with the following fields: the pion
triplet ~π, the bare quarkonium field ϕ ≡ n̄n, and bare tetraquark field
χ ≡ 1/2[u, d][ū, d̄]. The chiral potential was derived in Ref. [7]

V =
λ

4
(
ϕ2 + ~π2 − F 2

)2 − εϕ+
1
2
M2
χχ

2 − gχ(ϕ2 + ~π2) , (1)

where, besides the usual Mexican hat, the parameter g describes the interac-
tion strength between the quark–antiquark fields and the tetraquark fieldχ.
In the limit g → 0 the field χ decouples, and a simple linear sigma model
for ϕ and ~π emerges. The minimum of the potential (1) is to order O(ε)

ϕ0 '
F√

1− 2g2/(λM2
χ)

+
ε

2λF 2
, χ0 =

g

M2
χ

ϕ2
0 , (2)

and ~π0 = 0. The condensate ϕ0 is identified with the pion decay constant
fπ = 92.4MeV. Note that the tetraquark condensate χ0 is proportional to
ϕ2

0: it is induced by spontaneous symmetry breaking in the quarkonium
sector. Shifting the fields by their vacuum expectation values (v.e.v.s) ϕ→
ϕ + ϕ0 and χ → χ + χ0, and expanding around the minimum, we obtain,
up to second order in the fields

V =
1
2

(χ, ϕ)
(

M2
χ −2gϕ0

−2gϕ0 M2
ϕ

)(
χ
ϕ

)
+

1
2
M2
π~π

2 + . . . , (3)
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where

M2
ϕ = ϕ2

0

(
3λ− 2g2

M2
χ

)
− λF 2 , M2

π =
ε

ϕ0
. (4)

Since the mass matrix has off-diagonal terms the fields ϕ and χ are not mass
eigenstates. The mass eigenstates H and S, identified with the resonances
f0(600) and f0(1370), respectively, are obtained upon a SO(2) rotation of
the fields ϕ and χ(

H
S

)
=
(

cos θ0 sin θ0
− sin θ0 cos θ0

)(
χ
ϕ

)
, θ0 =

1
2

arctan
4gϕ0

M2
ϕ−M2

χ

. (5)

The tree-level masses of H and S are

M2
H = M2

χ cos2 θ0 +M2
ϕ sin2 θ0 − 2gϕ0 sin(2θ0) , (6)

M2
S = M2

ϕ cos2 θ0 +M2
χ sin2 θ0 + 2gϕ0 sin(2θ0) . (7)

For the reasons discussed in the Introduction, the bare tetraquark is chosen
to be lighter than the bare quarkonium, thus: MS > Mϕ > Mχ > MH .
The state H ≡ f0(600) is the predominantly tetraquark state, and the state
S ≡ f0(1370) is the predominantly quarkonium state.

3. Results and discussions

In order to investigate the nonzero T behavior, we employ the
CJT-formalism in the Hartree–Fock approximation [8]; for specification of
the method in the case of mixing we refer to [9]. The CJT-formalism leads
to temperature dependent masses MS(T ), MH(T ), Mπ(T ) and a temper-
ature dependent mixing angle θ(T ). Moreover, both scalar–isoscalar fields
have a T -dependent v.e.v., for the quarkonium ϕ0 → ϕ(T ) and for the
tetraquark χ0 → χ(T ). For both fields zero-temperature limits ϕ(0) = ϕ0

and χ(0) = χ0 of Eq. (2) hold.
When the tetraquark decouples (limit g → 0), S is a pure quarkonium

and H is a pure tetraquark. The transition is crossover for MS ≤ 0.95GeV
and first order above this value. This is a well established result, e.g. in
Ref. [10]. The fact that a heavy chiral partner (i.e., mass larger 1GeV) of
the pion leads to a first order phase transition disagrees with lattice QCD
calculations [11].

The inclusion of the tetraquark state changes this conclusion as shown
in Fig. 1: In Fig. 1 (a) MH = 0.4GeV is fixed and the parameters MS

and g are varied. In Fig. 1 (b) the behavior of the quark condensate for
fixed MS = 1.0GeV and MH = 0.4GeV is shown for different values of
the parameter g. One observes that for increasing values of the coupling
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Fig. 1. (a) Order of the phase transition as a function of the parameters of the
model. MH = 0.4GeV and MS and g are varied. The forbidden area violates the
constraint

∣∣M2
S −M2

H

∣∣ ≥ 4gϕ0 [6]. On the border line between the first-order and
the crossover transitions a second-order phase transition is realized. (b) The chiral
condensate is shown for MH = 0.4 GeV and MS = 1.0GeV for different values of g
(step of 0.5GeV). Note, the dots in panel (a) correspond to the curves in panel (b).

g the critical temperature Tc decreases: while Tc = 250MeV for g → 0,
the value Tc ' 200MeV is obtained for g = 2.0GeV. Also the order of
the phase transition is affected: when increasing the parameter g, the first
order transition is softened and, if the coupling is large enough, becomes a
crossover.

We now turn to the explicit evaluation of masses, condensates, and the
mixing angle at nonzero T . The masses are chosen to be in the range quoted
by [1, 12]: MS = 1.2GeV and MH = 0.4GeV. The coupling strength is set
to g = 3.4GeV in order to obtain a crossover phase transition. Together
with the pion mass Mπ = 139MeV and the pion decay constant ϕ0 = fπ =
92.4MeV the parameter are determined as: λ = 52.85, Mχ = 0.96GeV, and
F = 64.2MeV.

The behavior of the two condensates is shown in Fig. 2 (a). At Tc =
180MeV the quark condensate ϕ(T ) drops and approaches zero, thus restor-
ing chiral symmetry. Below Tc the tetraquark condensate χ(T ) follows the
quark condensate, but above Tc the condensate starts to increase. (This
result could be different if additional terms ∼ χ4 in Eq. (1) were included).

By increasing T the function MS(T ) first drops softly, but at a certain
temperature Ts ' 160MeV a step-like decrease occurs, while the function
MH(T ) undergoes a step-like increase. The solid line in Fig. 2 (b) describes
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Fig. 2. Condensates (a), masses (b), and mixing angle (c) as function of T . (From
Ref. [6]).

the state S according to the following criterion: S is the state containing the
largest amount of the bare quarkonium state ϕ. For T < Ts it corresponds to
the heavier state, for T > Ts to the lighter one. A similar analysis holds for
the dashed line referring to H as the state with the largest bare tetraquark
amount.

The mixing angle θ(T ) shown in Fig. 3 (c). At Ts the mixing becomes
maximal and the angle jumps suddenly from π/4 to −π/4, limT→Ts = ∓π/4.
At Ts the two physical states H and S have the same amount (50%) of
quarkonium and tetraquark.

4. Conclusions

We have shown that the interpretation of f0(600) as a predominantly
tetraquark state sizably affects the thermodynamical properties of the chiral
phase transition: the behavior of the quark condensate is softened rendering
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the order of the phase transition cross-over for large enough tetraquark–
quarkonium interaction, and the value of the critical temperature Tc is re-
duced, in agreement with recent Lattice simulations [11].

In future studies one should include for a complete treatment the other
scalar–isoscalar states f0(980), f0(1500), and f0(1710) which appear in a
Nf = 3 context (together with the inclusion of the scalar glueball). Also,
(axial-)vector mesons shall be considered [13]. Nevertheless, the emergence
of mixing of tetraquark and quarkonium states is general, and its relevant
role at nonzero temperature is expected also in this generalized context.
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