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Most excited hadrons have multiparticle strong decay modes, which
can often be described as resulting from intermediate states containing one
or two resonances. In a theoretical approach, such a description in terms
of quasi-two-particle initial and final states leads to unitarity violations,
because of the complex masses of the involved resonances. In the present
paper, an empirical algebraic procedure is presented to restore unitarity
of the S-matrix while preserving its symmetry. Preliminary results are
presented in a first application to S-wave ππ scattering, in the framework
of the Resonance-Spectrum Expansion.

PACS numbers: 11.80.Gw, 11.55.Ds, 13.25.–k, 14.40.Be

1. Introduction

Inspection of the Particle Data Group (PDG) tables [1] reveals that most
excited mesons and baryons have strong decay modes involving more than
two lighter hadrons. Moreover, one also verifies that many of these decays
can be considered “cascades” of decays from intermediate states involving
one or more resonances. A few mesonic examples of such processes are [1]

1. f0(1370) → ρρ , 2(ππ)S-wave , . . . → 4π ;

2. K2(1770) → K∗2 (1430)π , Kf2(1270) , . . . → Kππ ;

3. φ(2170) → φf0(980) → φππ , KKf0(980) → KKππ .
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In the first example, 2(ππ)S-wave stands for σσ, where σ is the very broad
f0(600) [1] scalar resonance. In all three cases, the final state contains 3 or
even 4 mesons that are stable with respect to strong interactions. In order to
describe such processes in a mathematically rigorous way, respecting unitar-
ity, one would have to resort to (relativistic) Faddeev [2] or Yakubovsky [3]
equations, respectively, in the scattering regime. As a matter of fact, such
a Faddeev approach was applied [4] to the φ(2170), as a three-body reso-
nance in φKK and φππ, though not including the KKf0(980) component
and also not the 4-body KKππ channel. Note that solving relativistic 3- or
4-body equations with many channels is already a huge task, but it becomes
absolutely impracticable if one wants to go beyond an effective description
as in Ref. [4], by taking into account the quark substructure of the decaying
resonance.

In experimental data analyses, one often falls back upon dispersive or
purely phenomenological parametrisations, as e.g. in Refs. [5, 6] for the de-
scription of the 4π channel in S-wave ππ scattering above 1 GeV and the
f0(1370) resonance.

An alternative, theoretical approach is to interpret the intermediate state
in a cascade decay as a (quasi-)final state, containing one or two resonances
as outgoing particles. The problem then arises how to deal with the, in
principle, complex mass(es) of the resonance(s), while preserving two-body
unitarity. One way is by discretising the resonance real-mass distribution(s),
and accordingly including a large number of channels having the correspond-
ing threshold energies, with relative coupling strengths given by the mass-
distribution function. Something in this spirit has been carried out in a
coupled-channel description of S-wave meson–meson scattering in a chiral
unitary model [7]. A drawback of such a method is the proliferation of chan-
nels, besides the problem of properly dealing with resonances not far above
threshold.

In the present study, we shall try out a novel, intuitive approach, by
simply substituting complex values for the masses of the final-state reso-
nances, according to their listed [1] real (Breit–Wigner) masses and widths.
Although this step inexorably destroys unitarity, we can afterwards restore
it by a suitable redefinition of the S-matrix. This quite general procedure
is then applied to a concrete test case, in the framework of the Resonance-
Spectrum Expansion.

2. Resonance-Spectrum Expansion

The Resonance-Spectrum Expansion (RSE) is a model for the scattering
of two mesons in non-exotic channels, via an infinite set of intermediate
s-channel qq̄ states, i.e., a kind of Regge propagators [8]. The confinement
spectrum for these bare qq̄ states can, in principle, be chosen freely, but in



Complex Masses in the S-Matrix 933

all successful phenomenological applications so far we have used a harmonic-
oscillator (HO) spectrum with flavour-independent frequency (see Ref. [8] for
several references). Because of the separability of the effective meson–meson
interaction, the RSE model can be solved in closed form. The relevant Born
and one-loop diagrams are depicted in Fig. 1. For N meson–meson channels
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Fig. 1. Born and one-loop term of the RSE effective meson–meson interaction.

and several qq̄ channels, the effective potential has the form
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where the RSE propagator Rij(E) contains an infinite tower of s-channel
bare qq̄ states, corresponding to the spectrum of an, in principle, arbitrary
confining potential. Here, E(α)

n is the discrete energy of the nth recurrence
in qq̄ channel α, g(α)

i (n) [9] is the corresponding coupling to the ith meson–
meson channel, jiLi

(pi) is the Lith order spherical Bessel function, pi is the
relativistically defined off-shell relative momentum in meson–meson chan-
nel i, r0 is a distance parameter, and λ is an overall coupling constant.
Note that the spherical Bessel function results from assuming 3P0 qq̄ pair
creation/annihilation only to take place at a certain distance r0 [8]. The
closed-form off-energy-shell T -matrix then reads
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where
Ω(E) = −2iλ2r0 diag
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µnkn j

n
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with h(1)n
Ln

(knr0) the spherical Hankel function of the first kind, and kn the
on-shell relative momentum in meson–meson channel n. Finally, the corre-
sponding unitary and symmetric (on-shell) S-matrix is given by

S(Li,Lj)
ij (ki, kj ;E) = δij + 2iT (Li,Lj)

ij (ki, kj ;E) . (4)

Note that the S-matrix is only unitary for real ki, and so for real meson
masses in channel i.
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3. Redefining the S-matrix

As mentioned above, if we take a complex mass in any of the meson–
meson channels, the S-matrix ceases to be unitary, but stays symmetric.
This requires a redefinition of the S-matrix. Now, note that

S†S ≡ A (5)

is not unity anymore, but it is still a Hermitian matrix, by definition, and
so with real eigenvalues, which moreover are all positive in this special case.
Thus, A can be diagonalised by a unitary matrix U

Ad = US†SU † . (6)

Define now
S̃ ≡ SU †A−1/2

d U , (7)

where A−1/2
d is real, because of the positive eigenvalues. Then, it is straight-

forward to show that
S̃†S̃ = S̃S̃† = 11 . (8)

It is not so easy to prove that S̃ is also symmetric, but this has been checked
numerically with a precision of better than one part in a trillion.

4. Preliminary results

Let us now use the redefined S-matrix of Eq. (8) in a purely comparative
calculation. Starting point is our [10] application of the RSE to S-wave ππ
scattering, with pseudoscalar–pseudoscalar, vector–vector, and scalar–scalar
channels included.

Then, we substitute complex values for the masses of the broadest reso-
nances in some of these channels, namely for the f0(600) (alias σ), K∗0 (800)
(alias κ), and ρ meson. Note that the precise values we take for the complex
masses of the very broad σ and κ resonances are not so important here, but
in future model fits to the data one should use the best available, “world-
average” values for the corresponding pole positions. In Fig. 2, we plot the
curves for the two cases. Quite significant differences become evident, espe-
cially above 1 GeV. Nevertheless, the curve obtained with S̃ in Eq. (7) and
complex masses looks reasonable, though no refit has been done.
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Fig. 2. RSE calculation of S-wave ππ phase shifts. Red (upper) curve: from
standard S-matrix and real σ, κ, and ρ masses; blue (lower) curve: from redefined
S-matrix in Eq. (7) and complex masses.

5. Summary

In the present study, we have carried out an empirical procedure in order
to restore unitarity of a coupled-channel S-matrix with complex masses in
the asymptotic states. Although no rigorous mathematical justification is
given here for the purely algebraic transformation of the original S-matrix,
preservation of the mandatory symmetry of S gives us confidence that the
method makes sense. A direct comparison of S-wave ππ phase shifts, first
calculated with the original S and using real masses for the σ, ρ, and κ
resonances in some of the coupled channels, and then with the S̃ of Eq. (7)
and complex values for the latter masses, shows significant yet reasonable
changes. Nevertheless, our procedure will have to be tested in concrete fits
to the data so as to find out whether it is really a promising new approach
to multiparticle hadronic decays.
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