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η–η′ MIXING FROM THE CHIRAL LAGRANGIAN∗
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The mass matrix for η–η′ is derived in the flavor basis at O(p4) of
the chiral Lagrangian using the large N approximation. Under certain
assumptions, the mixing angle φ = 41.4◦ and the decay constants ratio
fK/fπ = 1.15 are calculated and in agreement with the data. It appears
that the FKS scheme arises as a special limit of the chiral Lagrangian.
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1. Introduction

The complexity of the η–η′ mixing was investigated in many theoretical
works [1–4]. Guided by symmetry, the chiral Lagrangian is one of the most
powerful tool to study the interaction of Goldstone bosons. The η′ is not a
Goldstone bosons because of the U(1) axial anomaly, but its inclusion in the
chiral Lagrangian can be done using large N arguments. A convention for
approximating the expansion could be to keep just the leading order in 1/N
term for any given order in momenta. Arguing that dynamics and large N
are independent, such an expansion was proposed [1] and leads to a good
description of η–η′ properties in terms of a few low-energy constants [1].

I summarize here the development proposed in [4] (to be consulted for
details), in which we rewrote the mass matrix in terms of physical quantities
instead of low-energy constants. We also identified the relevant flavor basis
well suited to deal with the mixing problem. On this basis, every unknown
can be expressed (approximately) in terms of four masses Mπ, MK , Mη,
Mη′ , which become our only inputs.

The derivation of the mass matrix is presented in Section 2. In Section 3,
we compare our approach based on the chiral Lagrangian to Feldmann–
Kroll–Stech (FKS) formalism [2] and show how the assumption of Ref. [2]
influences the mass matrix. Section 4 is devoted to the conclusion.
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2. The chiral Lagrangian

Let us briefly review what is known from the chiral Lagrangian. In
the large N limit, the relevant degrees of freedom are the nine Goldstone
bosons of the symmetry breaking U(3)L ⊗ U(3)R → U(3)V. We collect
the Goldstone mesons in a nonlinear parametrization U = exp

(
i
√

2π/f
)

transforming according to U
G−→ LUR†, L ∈ U(3)L, R ∈ U(3)R, with

π = πaλa (λ0 ≡ 13

√
2/3).

The chiral Lagrangian is constructed via an expansion in the momenta.
At each order in p2 we only retain the dominant term in the 1/N expan-
sion [1]. To lowest order in derivatives, the chiral Lagrangian encodes the
symmetry breaking terms and reads

L(p2) =
f2

8

〈
∂µU

†∂µU +B
(
MU † + UM†

)〉
+
α0

2N

[
f

4

〈
ln
(

detU
detU †

)〉]2

=
1
2
∂µπ

a∂µπbδab −
1
2
Bπaπb〈λaλbM〉−

1
2
α0η

2
0 . (1)

M being the mass matrix transforming like U . We use isospin SU(2) sym-
metry and therefore M = diag(m̃, m̃,ms). The physical masses (squared)
are m2

π = Bm̃ and m2
K = B(m̃+ms)/2.

The diagonal mass matrix induces a privileged basis. For this, it is useful
to work in the flavor basis. For this purpose, we use the representation

π =
√

2 diag
(
uū, dd̄, ss̄

)
. (2)

We dropped the noninteresting nondiagonal fields. We next introduce the
fields ηs = ss̄ and ηq = (uū+dd̄)/

√
2 allowing to rewrite the mass matrix as

M2
qs =

(
m2
π + 2(α0

N ) (α0
N )
√

2
(α0
N )
√

2 2m2
K −m2

π + (α0
N )

)
. (3)

The mixing is provided only by the anomaly as expected from the ideal
mixing between the vector particles ω and φ. We have only one parameter
to reproduce two physical states, this is clearly not enough [1, 4].

We next explore the chiral Lagrangian at O(p4). For our purposes, we
are only interested in terms contributing to the kinetic part, the mass matrix
and the decay constants. We restrict ourselves to terms involving only zero
or two derivatives, and we only keep the leading order in 1/N . There are
three terms of interest at O(p4) and they involve a single trace over flavor [1]

f2

8

[
− B

Λ2

〈
M∂µ∂

µU †
〉

+
B2

2Λ2
1

〈
MU †MU †

〉
+

B

2Λ2
2

〈
MU †∂µU∂

µU †
〉]

+h.c.
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The three low-energy constants enter the observables without a clear
physical meaning. Λ and Λ2 induce a splitting between the π and K decay
constants. Λ1 and Λ2 enter in the corrections to the mass matrix. Fitting
their values on observables leads to a consistent η–η′ scheme at O(p4) [1].

We are interested in a more physical interpretation of the low-energy
constants and we aim at an analytical resolution of the mass matrix. We,
therefore, would like to reduce the number of parameters since a two-by-two
matrix gives us only two independent equations. To this aim, we rotate
away the Λ term by a chiral transformation at O(p2) [1]

U −→ U ′ = U − B

2Λ2

(
M− UM†U

)
. (4)

Such a redefinition preserves the unitarity of U up to O(p4) in the La-
grangian, but does not preserve the anomalous term. The Lagrangian after
rotation reads (see [4] for the expressions of K1 and K2)

L(p4) = L(p2) +B
f2

8

[
K1

〈
MU †MU †

〉
+BK2

〈
MU †∂µU∂

µU †
〉]

+ h.c.

− α0

2N
B

Λ2

f2

8

〈
M†U − U †M

〉〈
ln
(

detU
detU †

)〉
. (5)

The physics described by the Lagrangian (5) is exactly the same as that
of the original Lagrangian. But now, the low-energy constants appear in a
more convenient way. Indeed, to derive the mass matrix, one should always
bring the kinetic terms into its canonical form by means of a redefinition of
the fields. With our particular Lagrangian (5), the wave-function renormal-
izations are simply proportional to the matrix of the decay constants. This
matrix is proportional to 〈λaλbM〉. Renormalizing the fields is easy in the
case of a diagonal matrix since it only amounts to renomalizing the fields
by a simple rescaling without any rotation. This is not the case in the U(3)
basis, where the rotation is mandatory [5] to bring us in the flavor basis
where 〈λaλbM〉 becomes diagonal. It is, then, more advantageous to start
directly in the flavor basis (2). In the flavor basis the kinetic terms

1
2

(
fq
f

)2

∂µηq∂
µηq +

1
2

(
fs
f

)2

∂µηs∂
µηs (6)

does not present any mixing term. Moreover, since the kinetic energy and the
decay constants follow the same pattern, the matrix of the decay constants
is also diagonal. This avoids unwanted (and sometimes overlooked [6]) tran-
sition elements J8

µ|η0〉. The particular structure of the mass matrix imposes
then a privileged basis as claimed below and used in the FKS scheme [2].
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The flavor decay constants can be easily expressed in terms of the phys-
ical ones (in the U(3) basis):

f2
q = f2

π , f2
s = 2f2

K − f2
π . (7)

The mass matrix then involves those physical decay constants. Introducing
the parameter y = fq/fs, we can derive from the Lagrangian (5) the mass
matrix in a more convenient form

M2
qs =

(
M2
qq + 2α αy

√
2

αy
√

2 M2
ss + αy2

)
+O

( α
Λ2

)
. (8)

For convenience we have defined α = (α0/N)(f/fq)2.
O
(
α/Λ2

)
stands from the contribution of the last term in (5). Assuming

a negligible term O
(
α/Λ2

)
provides us with analytical formulas, whereas the

inclusion of this term leads to a unavoidable numerical procedure.
From (8) and neglecting the term O

(
α/Λ2

)
(or equivalently taking the

limit Λ→∞), it is straightforward to extract the value of the parameters y
and α in function of the masses. Equating the determinant and the trace of
(8) with the mass matrix of the physical states, diag(M2

η ,M
2
η′), we obtain [4]

(with φ the mixing angle in the flavor basis)

y2 = 2
M2
ηM

2
η′ −M2

ss(M
2
η +M2

η′ −M2
ss)

M2
π(M2

η +M2
η′ −M2

π)−M2
ηM

2
η′
, (9)

α =
M2
η +M2

η′ −M2
π −M2

ss

2 + y2
, (10)

sin 2φ =
2
√

2αy
M2
η′ −M2

η

. (11)

In the mass matrix (8), Mqq and Mss are the unknown masses of the
pseudoscalar qq̄ and ss̄ states. They can be related to physical masses by
expressing them in the U(3) basis in analogy with (7). We will use M2

qq =
M2
π and M2

ss = 2M2
K −M2

π . The latter expression is only valid at leading
order and received an extra contribution, around 5%, at O(p4) [1]. This
approximation coincides with the value used in the FKS paper [2].

We then obtain the value for the two parameters y and α and a prediction
for the physical quantities

fK
fπ

= 1.146 , φ = 41.40◦ . (12)
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Our calculated values (12) lie in the usual range of [40◦, 45◦] [7] and are in
agreement with the data on η and η′ decays. The phenomenological value
for the ratio fK/fπ = 1.193(0.009) [8] is also close to our predicted value.

The approximation M2
ss = 2M2

K −M2
π is only valid at leading order and

receives a correction at order O(p4) [1]. The extra contribution reduces the
value of the mixing angle and fK/fπ as shown in [4].

3. Comparison with FKS formalism

We next compare the prediction of the chiral Lagrangian with the FKS
results [2]. The basic hypothesis of the FKS formalism was the assumption
that decay constants in the flavor basis follow the same mixing pattern of
the states (

f qη fsη
f qη′ fsη′

)
=
(

cosφ − sinφ
sinφ cosφ

)(
fq 0
0 fs

)
. (13)

Under this assumption, the mass matrix is derived from current algebra and
reads

M2
FKS =

(
M2
qq +

√
2
fq
〈0|αs

4πGG̃|ηq〉
1
fs
〈0|αs

4πGG̃|ηq〉√
2
fq
〈0|αs

4πGG̃|ηs〉 M2
ss + 1

fs
〈0|αs

4πGG̃|ηs〉

)
.

Let us see how it arises from the chiral Lagrangian.
At the effective level, we find [4]

〈0|αs

4π
GG̃|ηq〉 = α

√
2fq , 〈0|αs

4π
GG̃|ηs〉 = αy2fs . (14)

RewritingM2
FKS in our notation, we get the mass matrix (8), but without

the O(α/Λ2) term. The mass matrix is then symmetric and we do not need
to impose the equality of the off-diagonal terms by hand as in Ref. [2].

The important point is that we did not use any assumptions of the mixing
scheme for the decay constants in the derivation of (8). The hypothesis (13)
is not mandatory from our effective field theory point of view and is not
physically justified on general grounds. By comparing both approaches, we
notice that the hypothesis on the decay constants pattern is not consistent
with the chiral Lagrangian at next-to-leading order in the large N limit since
it amounts to neglecting of the first term in (2).

4. Conclusion

Keeping only the leading term in 1/N at each order in the momentum
expansion, we derived at O(p4) a mass matrix in the flavor basis. The quan-
tities are expressed in terms of the masses and the ratio of decay constants y,
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instead of the low-energy constants, allowing a clear understanding. Such
a form allows the extraction of two parameters φ and y from mass inputs.
Their values are in agreement with the data.

The choice of the flavor basis is motivated by the simple expression of the
kinetic term and the diagonal matrix for the decay constants. Such features,
not apparent in the U(3) basis, make the calculation tedious in that basis
and render the physics more obscure.

We also relate the FKS formalism [2] with the chiral Lagrangian ap-
proach, where no assumption on the mixing scheme for the decay constants
is required. It is shown that the FKS Ansazt (13) is not compatible with the
chiral Lagrangian. The difference stands in the parameter Λ. Taking the
limit Λ→∞ renders the FKS scheme whereas its value, extracted from the
data, is of the same magnitude as those of the other low-energy constants [1].

The predicted values (12) are in agreement with the data, but leave a
room for improvement since assumptions were invoked. Moreover, the glue
content in the η′ wave-function should be properly considered at O(p4). To
this aim, the inclusion of the pseudoscalar glueball in the chiral Lagrangian
in under construction [3].
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