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A recently proposed method of studying the long-range correlations in
multiparticle production is described. It is explained how it can be used in
practice to uncover the mechanisms of particle production in high energy
collisions.
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1. Introduction

Long range correlations among particles produced in high-energy mul-
tiparticle production processes have been studied for many years [1]. The
usual approach was to look at the forward–backward correlations, i.e. on
the correlation between the populations of a near-forward bin and a near-
backward bin in rapidity. Recently, also analyses using three bins have been
published [2,3]. Here we summarize the results of our two recent papers [4,5]
where we discuss the general case of correlations between the populations of
B ≥ 2 bins. As was to be expected, the number of predictions, which can be
obtained and used to test specific models, as well as the general mechanisms
of particle production, increases rapidly with B.

We consider a generic scheme, where the particles are produced by N
independent groups of sources. The sources in each group are independent
and identical. The number of sources in a group i will be denoted wi.
The numbers wi can be either fixed, or random governed by a probability
distribution W (w1, . . . , wN ).
∗ Presented at the Workshop on Timing Detectors, Kraków, Poland, November 29–
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Finally, we assume that, for each source, emitted particles fall randomly
in various bins and thus they follow the Bernoulli distribution

P (n1, . . . , nN ) =
n!∏B

j=1 ni!

B∏
k=1

pnk
k . (1)

Here P (n1, . . . , nB) is the probability that ni particles get into bin i for
i = 1, . . . , B, n =

∑B
j=1 nj , and pk are probabilities normalized by the

condition
∑B

k=1 pk = 1. The probabilities pk are the same for identical
sources and, in general, different for sources belonging to different groups.
This assumption is widely accepted [1, 6, 7], but it ignores e.g. short range
correlations among the final particles. Therefore (1) is expected to be valid
only if the bins are separated by a sufficient distance.

Many specific models are special cases of the general scheme considered
here [1]. For Landau’s model [8] N = 1 and w1 = 1. For deep inelastic
scattering it is natural to assume N = 2 and w1 = w2 = 1, because there are
the proton remnants and the photon remnants. For the wounded constituent
model [9] N = 2, and wi are random integers with a probability distribution
W (w1, w2). In this case the right moving sources are mirror reflections of
the left moving sources, this reduces the complexity of the model to that
of models with N = 1. In the dual parton model [10] N = 3, because
besides the left moving sources and the right moving sources there are also
the central sources. In this model all the numbers wi fluctuate.

2. Number of observables and number of parameters

A specific model to be compared with experiment is defined by the num-
ber of different sources N , the probability distribution W (w1, . . . , wN ) and,
sometimes, by some constraints put on the sources. In order to get meaning-
ful tests one should arrange things so that the number of parameters of the
model is smaller than the number of the measured observables. The basic
observables are the (factorial) moments

Fi1...iB =

〈
B∏

j=1

nj !
(nj − ij)!

〉
, (2)

where the averaging is over all the events included. Denoting r =
∑B

j=1 ij ,
we propose to measure all the moments with r < rmax, where rmax remains
to be chosen. If there are no constraints, like forward–backward symmetry
in collisions of identical particles, the number of such moments is [5]

m(rmax, B) =
(B + rmax)!
B!rmax!

− 1 . (3)
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Corresponding formulae for the forward–backward symmetric case are given
in the Appendix of [5]. It is seen that this quantity increases rapidly with
both B and rmax. For practical reasons it seems reasonable, however, to
keep rmax equal two or at most three.

The number of parameters is [5]

P (B,N, rmax) = N(B − 1) +
(N + rmax)!
rmax!N !

− 1 . (4)

In the special case, when the numbers wi are fixed and known, this formula
is replaced by

P (B,N, rmax) = N(B + rmax − 1) . (5)

The terms N(B − 1) in (4) and (5) are the numbers of the independent
probabilities pk. The remainder is related to the moments of multiplicity
distribution within a source and of the distribution W (w1, . . . , wN ).

Substituting numbers one finds that for N = 1 already for rmax = 2 and
two bins there are predictions to be tested, even in the general case when
the number of sources w fluctuates. For N = 2 to get predictions at fixed wi

one has to study at least three bins for rmax = 2, or two bins for rmax = 3. If
the numbers of sources fluctuate, the corresponding numbers of bins are four
and three. For N = 3 and fixed numbers of sources wi the minimal numbers
of bins corresponding to rmax = 2 and rmax = 3 are five and three. When
the numbers of sources fluctuate these numbers increase respectively to six
and four. These examples show that the problem becomes more complicated
when N increases, but one can cope with it, if the number of bins can be
sufficiently increased.

3. How to test a model

Given a model, one should first choose B and rmax sufficiently large
to yield predictions. Then the formulae relating the measured moments
to the parameters of the model should be written down. It is possible to
get general formulae [5], but in practice it is more convenient to use the
simpler ones, adapted to the model being considered. In particular, when
the numbers of sources wi are fixed, it is advisable to use cumulants instead
of the moments (2). The brute force method is to minimize the χ2 for these
equations. If the resulting χ2 is acceptable, one can extract and interpret
the parameters of the model. If not, one concludes that the model does not
work. In many cases, however, it is better to use analytic methods in order
to make the analysis simpler and more transparent. Let us consider some
examples.
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For Landau’s model N = 1 and one finds

Fi1...iB = F (r)
B∏

j=1

p
ij
j , (6)

where the B − 1 independent probabilities pj and the rmax numbers F (r),
further called reduced moments, are parameters of the model. It is seen that
all the probabilities pj can be obtained from the first order moments and
then there is one new parameter F (r) for each successive r ≤ rmax. This
parameter can be determined either by minimizing χ2, or from the sum rule

F (r) =
∑ r!

i1! . . . iB!
Fi1...iB , (7)

where the summation is over all the sets i1, . . . , iB satisfying the constraint∑B
j=1 ij = r. For this analysis it is irrelevant whether or not the multiplicity

of sources w fluctuates1.
For the wounded constituent model N = 2 and consequently there are

two sets of probabilities piL and piR for i = 1, . . . , B. However, in the
nucleon–nucleon center of mass system, when the bins in rapidity are chosen
symmetrically, we have for each i: piL = p(B−i)R. Therefore the number of
independent probabilities is still B−1. Since in this model the multiplicities
of sources, wL and wR, fluctuate, the resulting moments are averages over
the probability distribution W (wL, wR). We will denote this averaging by
the Dirac brackets. The formulae for the moments of the first two orders are

F
(1)
i = piL

〈
F̃

(1)
L

〉
+ piR

〈
F̃

(1)
R

〉
(8)

F
(2)
ij = piLpjL

〈
F̃

(2)
L

〉
+ piRpjR

〈
F̃

(2)
R

〉
+ (piLpjR + piRpjL)

〈
F̃

(1)
L F̃

(1)
R

〉
,

where F (1)
i = 〈ni〉, for i 6= j F

(2)
ij = 〈ninj〉 and F

(2)
ii = 〈ni(ni − 1)〉. The

formulae for F (3)
ijk can be found in [5].

Let us consider first the asymmetric case. As seen from (8), for rmax = 2
there are five parameters besides the probabilities2. The r = 1 moments
yield, after eliminating F̃ (1)

R and F̃ (1)
R , B−2 probabilities. We assume B ≥ 3.

As seen from (8), the 1
2B(B + 1) second order moments have to be fitted

with four free parameters . Already for B = 3 there are two predictions.

1 A more detailed discussion of the Landau model, adapted to the conditions of the
ALICE experiment can be found in [11].

2 The physical meaning of these parameters is explained in [5].
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One easily sees that for each higher value of r the number of new parameters
is equal r+1 and thus one obtains more constraints. E.g. for rmax = 3 there
are eight predictions.

For symmetric collisions the number of independent measurable moments
and the number of parameters get reduced. The number of moments to be
measured for rmax = 1 equals K; for rmax > 1 it is (B+rmax)!

2rmax!B! + Q where
Q = (K − 1)/2 for B even. For B odd Q equals K/2 and K for rmax = 2
and rmax = 3, respectively. Here K = B/2 for B even and K = (B + 1)/2
for B odd. The number of independent probabilities piL, piR remains equal
(B−1), but the number of other parameters for rmax = 1, 2, 3 is, respectively,
1, 3 and 5. Substituting numbers, one finds that e.g. for three bins there is
one prediction for rmax = 2 and five predictions for rmax = 3.

The discussion of the dual parton model is similar, except that a new
central source has to be included. Thus N = 3, with two kinds of sources
related like for the wounded nucleon model, and the multiplicity distribution
for sources is W (wL, wC , wR). This makes the formulae longer, but their
discussion is very similar [5] to that in the preceding example. One finds
that for rmax = 2 it is necessary to take B ≥ 5 to get predictions. For B = 5
there are two predictions. For rmax = 3, it is enough to have B ≥ 3. For
B = 3 there are three predictions and for B = 4 eight.

4. Conclusions

Modern, high energy experiments make it possible to study the correla-
tions among the particles produced in more than two, well separated bins.
We presented a general analysis of such correlations [4,5] (see also [7]). This
analysis shows that by increasing the number of bins one can exhibit much
better the predictive power of the models and consequently test them more
thoroughly. Even more important, such analysis allows to test the very
mechanism defining the model since it does not depend on details of for-
mulation, e.g. a particular parametrization. On the other hand, if a model
agrees with data, the results allow to obtain information about its specific
features and ingredients.

For some models predictions appear only when the number of bins ex-
ceeds, sometimes significantly, two or three. Then our more general approach
is necessary to get any tests at all.

The method is remarkably flexible. One can handle symmetric collisions,
which are simpler, as well as asymmetric collisions, which give more infor-
mation. We have presented in some detail the analysis for Landau’s model,
which is the simplest, and of the wounded constituent model, which nicely
illustrates the modifications necessary, when going from asymmetric to sym-
metric collisions. Going to more complicated models, like the dual parton
model, makes the formulae and the necessary fitting more cumbersome, but
does not introduce any new principle.
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We described our method as a generalization of the forward–backward
correlations, corresponding to bins in rapidity, but exactly the same analysis
is applicable to correlations in other variables, e.g. in the azimuthal angle.

This investigation was supported in part by the grant N N202 125437 of
the Polish Ministry of Science and Higher Education (2009–2012).
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