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1. Introduction

Transportation networks are among the most important building blocks
in the economic development of a country. The structure and performance of
transportation networks reflects the ease of travelling and transferring goods
among different parts of a country, thus affecting trade and other aspects of
the economy. In the recent years, complex network analysis has been used
to study several transportation networks. These include airport networks
(for instance, the airport network of China [1], airport network of India [2]
and the world-wide airport network [3, 4]), urban road networks [5, 6] and
railway networks [7, 8, 9, 10,11].

Some commonalities have been observed in the topological properties of
almost all transportation networks, such as small-world properties. On the
other hand, certain topological properties, such as the cumulative degree
distribution, have been found to differ widely — power-laws for Indian air-
port network [2] and world-wide airport networks [4], two-regime power-laws
for the China airport network [1] and US airport network [12] as opposed
to the exponential degree distributions of the railway networks of India [10]
and China [9].

It is to be noted that several different models have been used in literature
to study transportation networks, and the observed topological properties
often depend on the way the network is modelled. Most studies, includ-
ing the ones referred to above, adopt a common network model where two
nodes (airports or stations) are linked by an (undirected) edge if there exists
a direct connection (flight or train) between the two nodes1. On the other
hand, a directed network model was used in [11] to study the Chinese rail-
way network, where the in-degree and out-degree of a node (station) were
defined as the number of trains arriving at the station and the number of
trains departing from the station respectively; the degree distribution of
this network was observed to be a power-law. Transportation networks have
also been modelled as bipartite networks (e.g. [8,13]) and weighted networks
(e.g. [2, 4]).

Railways are one of the most prominent modes of transportation in many
countries across the world and the complex topological properties of railway
networks of different geographical regions have attracted the attention of the
research community. The fractal structure of the railway network in Seoul
was studied in [7] — the fractal dimension of the network was found to
increase with time; also a comparison between the fractal dimension of the
ensemble of stations and that of the railway lines was proposed as a measure
of the quality of the transportation system. The underground (subway)
railway networks of Boston and Vienna were studied as bipartite station-
train networks in [8] — several topological metrics of the networks were

1 The same model is used in this paper as well, as detailed in Section 2.
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measured and compared with the corresponding theoretical predictions for
random bipartite graphs using a generating function formalism. Various
topological properties of the Chinese railway network have been studied
in [9,11], whereas [13] used a weighted representation of the Chinese railway
network to propose a metric to quantify the dependence of a station on
another.

The Indian railway network (IRN) is one of the largest and busiest rail-
way networks in the world, handling massive numbers of passengers and
quantities of goods daily. Railways are the most popular means of long-
distance transportation in India, hence the IRN is often described as the
backbone of this nation’s economy. However, analysis of the structure of the
IRN has received considerably less attention, as compared to the railway
networks of the European countries and China. To the best of our knowl-
edge, the only study of the structure of the IRN from a networks perspective
was in 2003 by Sen et al. [10], where the IRN was represented as a network
of stations, two of which were linked by an edge if a train halted at both the
stations. Hence the network considered in [10] was unweighted, and an edge
simply indicated the presence of a train linking two stations.

However, a transportation network is specified not only by its topology
of connections between stations, but also by the dynamics of the traffic-flow
taking place in the network. Such networks display a large heterogeneity in
the capacity of the connections; for instance, a significantly larger number
of trains can be expected to link two major stations compared to that link-
ing less important stations. Thus, in order to get a complete description of
transportation networks, it is essential to take into account the amount of
traffic-flow along the connections. Representing the amount of traffic on dif-
ferent links by edge-weights can yield observations that might be undetected
by metrics based on topological information alone, as was demonstrated for
the world-wide airport network in [4]. Hence, in this paper, we study the
IRN as a weighted network of stations (nodes), where the weight of an edge
indicates the number of trains linking two stations.

The present scenario in the transportation sector in India gives further
motivation for a detailed analysis of the IRN— it is a commonly voiced opin-
ion among economists that the current transportation network in India is too
weak to meet the demands of the country’s rapidly growing economy [14].
For instance, factors such as congestion, high traffic between major cities
exceeding the planned capacity [15] and over-utilized railway tracks are re-
sulting in trains having to travel at reduced speeds and carry lesser amounts
of freight, thus increasing the cost and time of transportation. In this situ-
ation, a detailed understanding of the network-structure and traffic-flow is
essential to identify the possible problems in the IRN; such a study can help
in adopting effective extension policies in future and a better planning of
the railway budget.
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In this paper, along with measuring the basic topological properties of
the present IRN, we also study the correlations of the amount of traffic with
the network topology. In view of the recent criticism of the IRN (as discussed
above), we also identify some of the potential points of congestion, which
act as bottlenecks in transportation. We find that, along with the railway
stations serving the major metropolitan cities, several relatively smaller sta-
tions (which have lesser resources such as railway tracks and platforms) are
also potential points of congestion because of their geographical location,
and hence more resources need to be allocated to these stations in order to
efficiently handle the growing amounts of traffic. Thus our study suggests
several guidelines for improving the performance of the IRN.

The rest of the paper is organized as follows. In Section 2, the rep-
resentation of a railway network as a weighted network is described along
with details on the method of collecting data on the IRN. The topological
properties of the IRN are discussed in Section 3, while the analysis of the
important nodes in the IRN is presented in Section 4. Section 5 concludes
the paper.

2. Network construction

Two different, but related, approaches have commonly been adopted in
the literature to represent a railway network as a complex network. In the
context of a railway network, a train-route is a sequence of stations at which
a train following that route is scheduled to halt. A railway network can
be represented as a bipartite train–station network [8, 13] with one set S of
nodes representing stations and the other set T of nodes representing the
train-routes; there is an edge between s ∈ S and t ∈ T if and only if station
s is a scheduled halt in the train-route t.

The more commonly used representation of a railway network is a net-
work consisting of only station nodes, where two stations si and sj are
connected by an edge if there exists at least one train-route directly linking
the two stations (in other words, if there exists at least one train-route such
that both si and sj are scheduled halts on that route). This representation
is frequently used [9, 10, 2] to model different transportation networks since
it directly captures some key facts on the connectivity of nodes (stations or
airports) — for instance, the neighbours of a given station si are precisely
those stations which can be reached from si by boarding a single train, while
the shortest distance between an arbitrary pair of stations si and sj is the
minimum number of different trains that one needs to board to travel from
si to sj . In a weighted version of this station–station network representation,
the weight of the edge between si and sj is the number of train-routes on
which both these stations are scheduled halts.
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The station–station network representation can be derived from the bi-
partite train–station network by constructing a one-mode projection of the
bipartite network over the station nodes, in which two stations s1, s2 ∈ S
are connected by an edge if they are linked to a common node t ∈ T in the
bipartite network (as depicted in Fig. 1). The weight of the edge linking
s1 and s2 in the projection is thus the number of distinct nodes t ∈ T to
which both s1 and s2 are connected in the bipartite network (this is analo-
gous to the number of train-routes on which both s1 and s2 are scheduled
halts). This is the approach we use in this paper to construct the weighted
station–station network representation of the IRN.

Fig. 1. Obtaining a weighted station–station network (StaNet) by one-mode pro-
jection of bipartite train–station network (TrainSNet).

The IRN is a dense network where the total number of stations and train-
routes are of the order of tens of thousands. In this study, we consider only
the ‘express’ train-routes and other long-distance train-routes (leaving out
‘local’ or suburban routes which traverse relatively short distances around
major cities), and only those stations which are scheduled halts on at least
one such train-route. We collected the data of the train-routes from the
official website of Indian Railways (www.indianrail.gov.in) in May 2010.
The website host information of 1072 express train-routes and 3041 stations
which are scheduled stops on at least one such train-route. Since almost all
train-routes in the IRN are bidirectional, the station–station network of the
IRN is assumed to be undirected. We constructed the bipartite train–station
network from the collected IRN data, and obtained the weighted station–
station network as a projection of the train–station network. The next
section presents the topological properties of the station–station network
model of the IRN.
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3. Topological analysis of the IRN

This section discusses the topological properties of the present-day IRN
which is represented as a weighted station–station network. The network
comprises of N = 3041 nodes (stations) and E = 181, 208 edges representing
presence of a direct link among stations. The average degree of the network
is thus 2E/N = 119.177 which indicates the average number of stations
reachable from an arbitrary station via a single train. The network exhibits
the small-world properties as already observed in [10]; the average shortest
path length, measured as the average number of edges separating any two
nodes in the network, is 2.53 which is very small compared to the network
size N .

3.1. Degree and strength distributions

The degree distribution p(k) of a network is defined to be the fraction
of nodes having degree k in the network. Thus, if there are N nodes in
a network and nk of them have degree k, we have p(k) = nk/N . The
cumulative degree distribution P (k), defined as the fraction of nodes having
degree at least k, i.e.

P (k) =
∞∑
i=k

p(i)

is preferred for analysis in practice, because the degree distribution is often
noisy and there are rarely enough nodes having high degrees to get good
statistics in the tail of the distribution, whereas the cumulative distribution
effectively reduces the number of statistical errors due to the finite network
size [16].

The degree of a node in the station–station network is the number of
stations that can be reached from the given station via a single direct train,
hence the node-degree is a measure of the connectivity of a station. The cu-
mulative degree distribution P (k) of the station–station network of the IRN
(Fig. 2(a)) is observed to be an exponentially decaying distribution having
the approximate fit P (k) ∼ exp(−αk) with α = 0.0082; however, it deviates
from the exponential nature for larger k. This exponentially decaying na-
ture of the degree distribution for the IRN agrees with observations in [10].
The deviation for large degrees can be attributed to the high cost of adding
links in the station–station network (in order to link a given station to a
new neighbour, a new train-route needs to be introduced or a new station
needs to be introduced in an existing train-route).
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Fig. 2. (a) Cumulative degree distribution of the IRN. (b) Cumulative strength
distribution of the IRN (both in semi-log scale, along with the exponential fits).

It may be noted that in contrast to the exponential degree distribu-
tions of most railway networks, the degree distributions of most airport
networks [1, 2, 4] have been observed to be power-laws which can be ex-
plained by the preferential attachment growth model [17]. There can be
several explanations for this variation, some of which are as follows.

First, there exist significant differences between the architecture of rail-
way networks and that of airport networks. In an airport network, if two air-
ports are connected by an air-route, it is rare for there to be an intermediate
airport in the route. However, in a railway network, even if most train-routes
are plausibly introduced between major end-stations i.e. high-degree nodes
(in agreement to the preferential attachment model), several smaller stations
are present between the terminal ones along the train-route, thus raising the
degrees of the smaller stations as well. This may result in exponential de-
gree distributions which are known to be more homogeneous compared to
scale-free distributions [18]. Second, the networks having power-law degree
distributions are characterized by the presence of a few hubs which are very
high-degree nodes. A railway station can handle only a limited number of
railway-tracks and trains (which limits the degree of the corresponding node
in the network), while it is relatively easier for an airport to have direct
connections with a large number of others; thus hubs are more likely to be
present in airport networks than in railway networks2.

The strength, or weighted degree, of a node in a weighted network is
defined as the total weight of the edges adjacent to the node [4]. In the
station–station network representation, the strength of a node (station) rep-

2 For instance, each of the metropolitan cities in India, which need to have high con-
nectivity with all parts of the country, are served by multiple railway stations in order
to share the high amounts of traffic; this limits the degree of the individual nodes
(stations) in the network.
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resents the total number of different journeys that can be undertaken from
that station (i.e. journeys to a different station or journey by a different
train-route); hence, it is a measure of the available transportation from a
station, which combines both the notions of connectivity and amount of
traffic-flow (number of train-routes) through the station. For cities having
large population and industrial production, the availability of transportation
should match the high demands, hence the strength of such nodes should
be high (along with high degree or connectivity). The distribution of node-
strengths in the IRN (Fig. 2(b)) also exhibits an exponential nature similar
to the degree distribution of the network.

3.2. Distribution of edge-weights

The edge-weights of the station–station network model the flow of traffic
in the railway network — the weight wij of the edge between two station
nodes i and j represents the number of train-routes which directly link both
these stations; hence passengers (and freight) move more frequently along
edges of higher weights. The analysis of edge-weights indicate a high level
of heterogeneity in the traffic-flow in the IRN. The cumulative distribution
of the edge-weights in the IRN (Fig. 3(a)) has an exponential fit P (w) ∼
exp(−αw) with α = 0.12.
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Fig. 3. (a) Cumulative distribution of edge-weights in the IRN, along with expo-
nential fit (semi-log scale). (b) Average strength of nodes having degree k, as a
function of k, along with the power-law fit (log–log scale).

3.3. Strength-degree correlation

To investigate the relationship between the degree and strength (weighted
degree) of nodes, we plot the correlation between degree k and the average
strength s(k) of nodes having degree k in Fig. 3(b). s(k) increases rapidly
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with k, following a power-law behaviour s(k) ∼ kβ , with β = 1.403. In the
absence of correlations between the edge-weights and the degree of adjacent
vertices, the strength of a vertex would be simply proportional to its de-
gree, yielding β = 1 [4]. The higher value of β for the IRN implies that
node-strengths are strongly correlated with node-degree in the IRN and the
strength of nodes grow faster than their degrees. This indicates that in-
troduction of new trains on existing routes (i.e. increasing the weights of
existing edges, thus increasing the strength of nodes) is more common in the
IRN compared to construction of new train-routes that link a station with
new neighbours (i.e. increasing the degree of nodes). Similar trends have
also been observed for the Chinese railway network [11].

3.4. Weight-degree correlation

The strength-degree relationship can also be characterized by the cor-
relation of weight wij of the edge between nodes i and j, with the degrees
ki and kj of the end-points i and j, as studied in Fig. 4(a). It is evident
that the links between high-degree nodes (important stations having high
connectivity) tend to have high values of traffic in the IRN. Such high-traffic
links between the major cities are generally referred to as trunk routes.

3.5. Degree-degree correlations

Another parameter used to investigate the network architecture is the
correlation among degrees of neighbouring nodes, which can be observed
from the average nearest-neighbour degree knn(k) of nodes having degree k
(Fig. 4(b)). It is observed that knn(k) remains the same on the average over
a significant range of degrees, implying the absence of major correlations
among the nodes of different degrees. This behaviour of knn(k) agrees with
the results for the IRN in [10].

However, a completely different perspective is gained regarding the as-
sortativity of the IRN by taking edge-weights into consideration. We use a
weighted variant of the average nearest-neighbours degree, kw

nn, as defined
by Barrat et al. in [4]. For a given node i, kw

nn,i > knn,i if the edges adja-
cent to i having the larger weights are connected to the neighbours (of i)
having larger degree, and kw

nn,i < knn,i in the opposite case. Analogously,
the behaviour of kw

nn(k) (the average weighted nearest-neighbour degree of
nodes having degree k) indicates the weighted assortative or disassortative
properties, taking into account the flow of traffic among the stations of the
network.

Fig. 4(b) compares the variations of knn(k) and kw
nn(k) with degree k

(using logarithmic binning of k-values for better visibility); kw
nn(k) shows a

pronounced assortative behaviour, implying that high-degree stations tend
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to connect with other high-degree stations, and the amount of traffic (weight)
along such links between high-degree nodes tend to be high as well. Similar
trends have also been observed for the world-wide airport network [4].

The topological assortativity coefficient, as defined by Newman [19],
comes out to be 0.0813 for the IRN, indicating that the topology of the IRN
is weakly assortative in nature. The definition by Newman was extended
for weighted networks by Leung et al. [20]; the weighted assortativity co-
efficient for the IRN is observed to be 0.2378, indicating that a pronounced
assortative behaviour when the traffic-flow is taken into consideration.
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Fig. 4. (a) Correlation of edge-weights and product of end-point degrees in the
IRN (semi-log scale). (b) Average degree of nearest neighbours knn(k) and aver-
age weighted degree of nearest neighbours kw

nn(k) of nodes having degree k, using
logarithmic binning of degrees (semi-log scale).

3.6. Clustering coefficient

Fig. 5(a) plots the average clustering coefficient cc(k) of nodes having
degree k as a function of k; cc(k) remains at a constant value close to unity for
small k and then shows an almost power-law decay at larger values of k. This
observation, which agrees with results in [10], can be explained as follows.
All stations on the same train-route are linked to form a clique in the station–
station network. The smaller stations (having low degrees) in the IRN are
served by very few train-routes, hence they are linked only to other stations
on these train-routes (other nodes in the clique), thus resulting in a clustering
coefficient near to unity for the nodes with low degrees. On the other hand,
major stations (having high degrees) are served by a large number of train-
routes, hence these stations are linked with other geographically distant
stations in diverse parts of the country, which themselves do not tend to
be connected, thus lowering the average clustering coefficient for nodes with
higher degree.
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It has been shown [21] that a power-law decay of cc(k) with degree k
is an evidence of hierarchical organization in a network, which implies that
low-degree nodes belong to interconnected communities. Thus an inherent
hierarchy is evident from the structure of the IRN.

For a weighted network, the clustering coefficient has been re-defined [4]
to incorporate edge-weights, in order to take into account the importance
of the clustered structure based on the amount of traffic actually found in
the cluster. Analogous to cc(k), ccw(k) is defined as the weighted clustering
coefficient averaged over all nodes of degree k. Fig. 5(b) compares the vari-
ations of cc(k) and ccw(k) with degree k; both versions have similar values
for low degrees, however ccw(k) lies consistently above the unweighted cc(k)
for intermediate and higher degrees, indicating that most of the traffic (i.e.
edge-weights) in the IRN is accumulated on interconnected groups of high-
degree nodes. Further, the variation of ccw(k) is much more limited in the
whole spectrum of k compared to that of cc(k), implying that high-degree
stations have a tendency to form interconnected groups with high-traffic
links (trunk routes), thus balancing the reduced topological clustering.

The clustering coefficient C of the network, which is the average of
the clustering coefficients for all nodes, is 0.733, while the corresponding
weighted clustering coefficient Cw comes out to be 0.789. Cw > C again
indicates that the major stations (high-degree nodes) form high traffic cor-
ridors among themselves.
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Fig. 5. (a) Average (unweighted) clustering coefficient cc(k) of nodes having degree
k, as a function of k. (b) Average unweighted and weighted clustering coefficients
as function of degree, using logarithmic binning of degrees (log–log plots).

From the above discussions, it is evident that considering the edge-
weights in the station–station network of the IRN has led to a more com-
plete reflection of the properties of the network, compared to what can be
obtained from the network topology alone. This justifies our motivation of
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studying the IRN as a weighted network. The practical implications of the
results obtained in this section in context of the IRN are discussed later in
Section 5.

4. Identifying major stations in the IRN

In this section, we identify the major stations in the IRN from the
station–station representation of the network. Since the node-degree is a
measure of the connectivity of a station, the nodes with high degrees are
evidently important in the network (this measure of importance of nodes
is known as degree centrality). The top 10 stations in the IRN based on
node-degree are listed in Table I. These stations can be classified into two
groups based on their geographical locations, as shown in Fig. 6(a):

• stations that are located in close vicinity to the metropolitan cities in
India (e.g. Howrah near Calcutta, Kalyan near Mumbai),

• stations that are located in the central parts of the country or at the
meeting points of railway lines connecting different zones (for instance,
the left-most circle in Fig. 6(a) is at Vadodara junction that is used by
most train-routes linking the western zone of India with the southern,
central and eastern zones).

Analogously, the nodes having high values of strengths (weighted de-
grees) are the ones which handle a high amount of traffic. Table I lists the
top 10 stations in the IRN based on node-strength, and Fig. 6(b) shows their
geographical locations.

TABLE I

Top 10 stations in the IRN on the basis of node-degree and node-strength. The
stations located in vicinity of metropolitan cities are marked by (*).

Top stations w.r.t. degree Top stations w.r.t. weights

Kanpur Central Itarsi
Howrah (*) Vijayawada
Kalyan (*) Kanpur Central

Ghaziabad (*) Vadodara
Itarsi Mughal Sarai

Varanasi Kalyan (*)
Vadodara Bhusawal
Allahabad Lucknow
Bhuwsawal Bhopal

Hazrat Nizamuddin (*) Allahabad
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(a) (b)

Fig. 6. The top 10 stations in IRN based on (a) degree, (b) weighted degree or
strength; Stations in the vicinity of the metropolitan cities in India marked with
(red) squares, other stations marked with (blue) circles.

Interestingly, all except one of these stations are located in the central
regions of the country or at the junction of railway lines connecting different
zones. Though these stations handle large amounts of traffic, they often do
not have as much resources (e.g. platforms, railway tracks) as the stations
located in close vicinity of the metropolitan cities. For instance, Howrah,
located near metropolis Calcutta and having the highest node-degree among
metropolitan stations, has 23 platforms and 25 tracks, while the two stations
with the highest node-strengths, Itarsi (located at the centre of the country)
and Vijayawada (located on the lines linking south zone with east and north
zones), have only 7 and 10 platforms respectively (as given in the Wikipedia
articles on these stations)3. Hence these stations are potential points of
congestion in the network.

Further, Fig. 6(b) shows that a majority of the stations with high
strengths are limited to two specific regions — in the states of Uttar Pradesh
and western parts of Madhya Pradesh. Comparing the locations of the
metropolitan cities shown in Fig. 6(a) with Fig. 6(b), it is seen that these
regions lie in between the metropolitan cities of India (between Calcutta
and Delhi, and between Mumbai and Delhi respectively), and hence these

3 It is to be noted that the stations in close vicinity to metropolitan cities, such as
Howrah, handle a significant amount of suburban railway traffic as well, but our
analysis does not take into account suburban train-routes (as stated in Section 2).
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regions contain several trunk-routes linking the metropolitan cities. Large
amounts of resource and manpower are required in these regions for efficient
management of the excessive traffic.

5. Discussion and conclusion

In this paper, we studied the Indian Railway Network as a weighted
complex network of stations, where the edge-weights represent the amount
of traffic between two stations. We observed that the IRN has exponential
distributions of node-connectivity and traffic-flows. Also the major stations
(high-degree nodes) tend to be linked among themselves and most of the
traffic in the IRN flows among these high-degree nodes.

Our findings from the topological analysis of the IRN (considering net-
work structure only) agree qualitatively with the findings in the only prior
study of the IRN in 2003 [10]. Hence it is evident that the basic topological
characteristics of the IRN, such as the degree distribution, degree correla-
tions and clustering coefficient, have remained almost unchanged over the
last decade. This corroborates the criticism that the IRN has not expanded
structurally as much as was required to handle the increasing demands of
traffic in the recent years.

The reasons for the recent concern over the IRN become even more ap-
parent by our analyses combining the topology with the traffic-flow in the
IRN. The node-strengths (weighted degree) grow faster compared to node-
degrees in the IRN (Fig. 3(a)) implying that the construction of new links
between stations has been significantly less than the introduction of new
trains along existing links. Considering the limited capacity of links to han-
dle trains, this shows the need for construction of new links among sta-
tions4. The correlation of edge-weights with the degrees of the adjacent
nodes (Fig. 4(a)) corroborates another reported cause for concern in the
present-day IRN — traffic on the trunk-routes between the large cities is
far exceeding the planned capacity, which means that trains have to travel
more slowly and the railway tracks wear out faster than intended [14, 15].
Hence new train-routes can be introduced to connect the larger cities; also,
the tracks in the existing trunk-routes should be replicated to handle the
large amounts of traffic. We also identify some of the smaller stations that
handle large amounts of traffic (Fig. 6(b)). The infrastructure at these sta-
tions should be improved to ease the congestion in the network. Thus our
study provides several guidelines for improving the performance in the IRN.

4 This has been recognized by the Indian Railways authority as well, and it has been
announced [15] that 25,000 kilometres of new railway-tracks would be constructed by
2020, which is far greater than the average rate of construction of tracks till now.
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