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We propose a gene regulatory network model which incorporates the
microscopic interactions between genes and transcription factors. In partic-
ular the gene’s expression level is determined by deterministic synchronous
dynamics with contribution from excitatory interactions. We study the
structure of networks that have a particular “function” and are subject to
the natural selection pressure. The question of network robustness against
point mutations is addressed, and we conclude that only a small part of
connections defined as “essential” for cell’s existence is fragile. Addition-
ally, the obtained networks are sparse with narrow in-degree and broad
out-degree, properties well known from experimental study of biological
regulatory networks. Furthermore, during sampling procedure we observe
that significantly different genotypes can emerge under mutation–selection
balance. All the preceding features hold for the model parameters which
lay in the experimentally relevant range.
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1. Introduction

Modern DNA sequencing methods help to reveal genomes of animals,
plants and microbes. What strikes from these studies is that complex or-
ganisms do not have many more genes than simple ones. For instance,
human genome consists of about 22000 protein-coding genes, fruit fly has
approximately 14000 and baker’s yeast has around 6000. Hence, human
beings do not even have an order of magnitude more genes than simple eu-
karyotes. Still we are far more complex than them. The reason behind this
mystery might be the way genes work together instead of their number. In
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particular, there are strong indications that in eukaryotes and prokaryotes
with increasing genome size the number of regulatory genes grows faster
than linearly in the total number of genes [1, 2]. Thus it seems reasonable
to study the network of interactions between regulatory genes.

After billions of years of evolution Earth’s life is a very diverse phe-
nomenon, yet all the living organisms are made of simple building blocks
called cells. The single cell is a device designed to interpret internal or
external signals in order to enhance its survival prospects. Depending on
the situation, i.e., either it is a threat of starvation or some internal dam-
age, this simple functional unit reacts by production of appropriate proteins
coded by certain genes. In general, gene products can be divided into three
groups: structural proteins, enzymes and transcription factors (TFs). The
last group is particularly interesting, since TFs serve only to activate (in-
hibit) other genes causing the increase (decrease) in a production rate of
other proteins. As a result, interactions mediated by TFs form a gene reg-
ulatory network (GRN), which is a useful concept to analyse different cell
states.

From the studies of real GRNs a couple of qualitative properties tran-
spire: (i) a given gene is generally influenced by a “small” number of other
genes [4, 5, 6], (ii) a few genes regulate many other genes (pleiotropic ef-
fect) [6, 7], (iii) GRNs seem to be robust to random change, yet they are
vulnerable to particular mutations in the genotype [8, 9, 10, 11]. In terms of
network terminology, the first two features correspond respectively to nar-
row in-degree distribution and broad out-degree distribution. Furthermore,
there is an evidence that the number of in-going links is governed by expo-
nential distribution [6]. However, if one tries to construct models of networks
with high robustness, one usually ends up with dense networks that is graphs
having a large number of links compared to number of nodes, which is not
the case experimentally. Therefore, most of the models so far have had to
build in some limitations to possible connectivity [5, 12].

We have recently proposed a model [3] taking care of interactions be-
tween genes and transcription factors which overcomes these shortcomings.
Basically, we derive the probability of TF binding to its target site by rep-
resenting DNA receiving site as a string of four bases (A, G, C, T) which
can be recognized by a complementary motif in TF molecule. Moreover, the
level of gene expression is determined by deterministic nonlinear dynamics,
which under mutation–selection balance produces a set of GRNs perform-
ing a given function. By analysing statistical properties of the obtained
ensemble of networks we qualitatively recover features found in biological
networks, and conclude that resulting GRNs are as sparse as possible being
compatible with their function. What is also very gratifying, is that all the
preceding findings are valid in the biologically relevant range of parameters.
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The structure of the article is following. First, we describe the model
structure by explaining how our framework works as a whole, rather than
giving justification for its separate parts; a detailed model description and
discussion can be found in [3]. Second, the process of simulation with
mutation–selection balance is presented and the emergence of functional
GRNs from random genotype is described. Third, we investigate the sta-
tistical properties of the obtained ensemble of networks. Particularly, we
analyse the Hamming distance distribution between TF molecules and DNA
regulatory sites. Afterwards the network resilience against point mutations
is evaluated, leading to very heterogeneous distribution of robustness with
only a few “fragile” interactions in the genotype. Not surprisingly, if such
an interaction is removed from a GRN, the network is unable to perform its
function anymore, so these links are “essential” to GRN viability. We end
this section by presenting in-degree distribution which is found to be narrow
and possibly with exponential decay. The concept of broad out-degree dis-
tribution is mentioned only briefly, just to give insight into a way it emerges
in our framework when applying population dynamics. Last, we conclude
by summing up all the findings and presenting possible generalisations for
the future work.

2. The model

2.1. General framework

In order to derive “design principles” of GRNs from the ensemble of reg-
ulatory networks a couple of models have been already used, probably the
best known being that proposed by Stuart Kauffman (see [13] and refer-
ences therein) in which a level of gene expression is a Boolean variable (1/0
for on/off). Here, however, we adopt a different strategy by allowing gene
expression levels to have intermediate values. Particularly, for ith gene its
corresponding normalized expression level is stored in Si ∈ [0, 1]. Further-
more for N genes we can define a vector variable S = (S1, S2, . . . , SN ) which
we refer to as a phenotype. Additionally, we assume that each of N genes
is able to produce only one type of transcription factor, and each gene can
be influenced by any of these TFs. As a result we obtain a N × N weight
matrix W where a given entry Wij corresponds to the strength of interac-
tion between ith gene and jth TF. Hereafter, we refer to W as the genotype
and a formula to determine the values of Wij will be given in the following
subsection.

To find gene expression pattern S(t) at any given time t, we propose a
deterministic dynamics described by a map S(t + 1) = G (S(t), W ), where
we call initial phenotype S(0). In the context of discrete dynamical systems,
G is the global transition function and S(t) denotes the configuration of the
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system at time t. This discrete dynamics can be represented by a sequence
of steps

S(0)︸︷︷︸
S(initial)

W−→ S(1) W−→ . . .
W−→ S(t) W−→ S(t + 1)︸ ︷︷ ︸

fixed point phenotype

,

leading to an attractor which is either a cycle or a fixed point. However, for
the following realisation1, after some transient behaviour we observe almost
only fixed points. The corresponding phenotypes are here interpreted as
cell’s “function”. This choice [14] is motivated from early embryo develop-
ment, where a network starting with some initial expression levels S(initial)

“performs a desired function” if and only if it converges to a steady state
expression pattern S(target) and maintains there.

In this framework we want to sample the space of all genotypes leading
from S(initial) to some fixed S(target). Due to the fact that we work with real-
valued phenotypes, we need to introduce a method to determine if a given
phenotype is close enough to the target one. Hence, we define a fitness
function

F (S) = exp
(
−fD

(
S, S(target)

))
, (1)

where D(S, S′) =
∑

i | Si−S′i | is the difference of expression levels for each
gene, and f ∈ R is a control parameter.

2.2. Microscopic interactions

Since our aim is to incorporate biological interactions between TFs and
DNA strand, we represent each TF as well as each binding site by a character
string of length L with characters belonging to a 4 letter alphabet. Following
the standard practice [15], we assume that the free energy of one TF molecule
bound to its target site is, up to an additive constant, equal εdij , where ε
is the single mismatch energy and dij is a number of mismatches between
ith binding site and jth TF (see Fig. 1). Furthermore, one can define the
“interaction strengths” Wij via Boltzmann factor

Wij = e−εdij , (2)

with normalizing constant set to 1 (cf. [16]). This way we are able to go
from molecular genotype, which consists of N TFs and N2 binding sites each
of length L to the weight matrix W . If there were exactly one TF molecule
Eq. (2) would correspond to probability of finding this molecule attached
to its target site. In case of nj TFs of jth type one can derive [16, 17]

1 The generalisation including repressors and possible cycles is discussed in the last
section.
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Fig. 1. Schematic representation of the regulatory region of gene i with N binding
sites. Represented is the interaction Wij mediated by the binding of TF j to the
jth site of that region. Here the string representing the TF is of length L = 10,
number of mismatches (non-complementary DNA bases) dij = 7, and the resulting
Wij is calculated according to Eq. (2).

the probability pij that precisely one of them is bound to the binding site of
ith gene

pij =
1

1 + 1/(Wijnj)
=

1
1 + exp (εdij − ln(nSj))

, (3)

which dependence is known to physicists as Fermi function (Fig. 2). In
the above formula, for the sake of simplicity, we assume that nj = nSj

where n is a model parameter representing the number of TFs. For living
cells the number of transcription factors varies from a few to even an order
of 104 with no typical value. As for other parameters used in the model,
the experimentally found values lead to 10 ≤ L ≤ 15 and ε between one
and three. Interestingly, from thermodynamics and kinetics of TF-DNA
interaction one can derive physical constraints, which lead to roughly the
same range of parameters [16]. For instance, the low boundary on L comes
from the demand to have at most a number of order one of “perfect” (with no
mismatches) binding sites in random genome. This condition is equivalent
to lg(1/4)L ≤ 1, where lg denotes the number of base pairs in a genome; in
case of bacteria lg ∼ 106, so L ≥ 10. Thus, for the subsequent results we
use by default L = 12, ε = 2.0, and a range of 10 ≤ n ≤ 104.

To model the dynamics of GRN, we consider the level of ith gene ex-
pression Si(t + 1) to strongly depend on the transcription rate of gene i at
time t. This assumption is supported by biological argument, basically, that
transcription rate is strongly associated with the degree to which the gene’s
regulatory region is occupied by TFs. To keep the framework simple, we
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Fig. 2. Left: Probability of finding TF attached to its target site for different values
of n; following Eq. (3) with Sj = 1 this probability is a Fermi function. Right:
Shown is the distance between stationary expression pattern S and S(target) for
two trajectories representing the emergence of functional network from a random
genotype.

assume that gene i transcription is “on” whenever at least one TF is bound
within its regulatory region and otherwise it is “off”. This is reminiscent of
an “OR” logical gate whereby the output is “on” if and only if at least one of
the inputs is “on”. The (normalized) mean expression level of a gene is then
identified with the probability that transcription is “on”. Hence, for gene i
we have

Si(t + 1) = 1−
∏
j

(1− pij(t)) , (4)

where

pij(t) =
1

1 + exp (εdij − ln(nSj(t)))
. (5)

The above holds for TF occupancies in the regulatory regions being statisti-
cally independent. This means that any strong correlations in transcription
regulation in real systems may be out of reach, yet we claim the qualitative
properties of GRN are not affected by the independency assumption, which
seems to be the case according to results presented in the following sections.
Moreover, we have restricted the transcriptional logic to be of the “OR” type.
Our TF thus act only as enhancers, never as repressors, and they do not co-
operate using more complicated logic [18]. However, it is possible to include
repressors in our framework, which generalization we briefly discuss in the
Conclusions and outlooks section. Nevertheless, for this paper findings it is
enough to work within minimal hypothesis.
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3. Mutation–selection balance

As already mentioned, we want to sample the set of all genotypes leading
from S(initial) to S(target), which GRNs we call viable. For simplicity, we
shall choose the S

(initial)
i and S

(target)
i for i = 1, . . . , N to be 1 (“on”) or

0 (“off”). If the initial and target phenotype are drawn at random, the
number of components set to 1 will be approximately equal to that set to 0
for large N . Hence, to reduce finite size effects in N , these numbers are set
exactly to N/2. In order to take into account the permutation symmetry
of the model we work with S

(initial)
i = 1 for i ≤ N/2 and 0 otherwise;

furthermore we also impose without loss of generality S
(target)
i = 1 for N/4 <

i ≤ 3N/4 and 0 otherwise. Notice that
∑

i S
(initial)
i =

∑
i S

(target)
i = N/2

and
∑

i S
(initial)
i S

(target)
i = N/4; we typically use N = 20 genes.

Since the space of viable GRNs is only a tiny fraction of the space of all
regulatory networks, we need to introduce some effective sampling method.
In particular, we use Metropolis random walk algorithm to explore this en-
semble. The procedure is following, we start with random genotype that
is we draw all the characters representing gene’s regulatory regions and
TF molecules randomly, and calculate the corresponding weight matrix W .
Next, with each step we apply a point mutation to characters representing
DNA binding sites, recalculate W , and according to Eq. (4) the associated
fixed point phenotype S. Afterwards, having S we compute fitness of the
genotype and accept or reject the attempted move according to Metropolis
acceptance probability.

This way by applying mutation–selection balance we obtain, after some
initial period, a series of viable genotypes. In Fig. 2 (right) one can trace
trajectories of gradual emergence of viable genotype from completely random
background. This process can be explained by gradual activation of genes
due to appearance of strong interactions in the genotype. Particularly, we
refer to an interaction Wij being strong if according to Eq. (3) the related
pij > 1/2 for Sj = 1. In other words, for a given n and ε we can define a
critical value dh = [ln(n)/ε], and any mismatch, let us call it subcritical, that
is less or equal to dh corresponds to a strong interaction. For instance, if the
subcritical mismatch appears on the diagonal interaction, it acts as a self-
excitatory regulation and the corresponding gene becomes expressed with no
need of activation from other genes. This concept of subcritical mismatches
being responsible for strong activatory regulation can be extended to non-
diagonal interactions, but then it is very difficult to analytically track the
leading behaviour of the system. Therefore, we should keep in mind that
these subcritical mismatches play a crucial role in the set of viable GRNs,
and in the subsequent section we provide a numerical evidences to support
this statement.
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4. Results

Having obtained the ensemble of viable GRNs, it is interesting to see
the distribution p(d) of Hamming distance between DNA binding sites and
associated TF molecules. In case of random choice of characters representing
the molecular genotype one expects

p(d) =
(

L

d

)
(1/4)L−d(3/4)d . (6)

The above binomial distribution has a very low probability of observing
small mismatches. Nevertheless, under selection pressure we expect to see
a significant number of functional sites with strong interactions, which are
associated with subcritical mismatches. Indeed in Fig. 3 we have apart
from binomial part a peak for low values of d. Furthermore, qualitatively
the same distribution is observed in studies of transcription factors bind-
ing energies [19] where the peak at low energy values corresponds to good
matching of TF to DNA target sequence. A similar mechanism of the ap-
pearance of a single separated peak in the distribution has also been seen in
the balls-in-boxes model [20].
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Fig. 3. Distribution of the Hamming distance between a TF and the receiving
DNA site for N = 20, L = 12, ε = 2.0 and for various values of n. Random case
corresponds to binomial distribution. The lines are to guide the eye.

Since regulatory networks are very robust to mutations and environmen-
tal changes [11, 22, 23], it is interesting to ask what are the consequences of
removing one of the interactions from the genotype. In our framework it
corresponds to setting Wij = 0 for the selected pair (i, j) and finding the
phenotype produced by the modified genotype. If the loss of interaction
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leads GRN to be a non-viable network, we refer to this interaction as “es-
sential”. Moreover, we find that as soon as n is not too large, there is almost
always just one essential interaction per row as shown in Fig. 4 (left).

We also consider a stronger measure of essentiality: we ask that viability
be lost when the interaction’s mismatch is increased by one. Remarkably, the
rule “one essential incoming interaction per gene” generally holds here too.
The average robustness of fitness with respect to binding site mutations,
Rbs, is readily estimated: there are N/2 sensitive interactions out of N2,
hence one expects Rbs ≈ 1−1/(2N). And indeed we find Rbs = 0.977(2) for
N = 20 (with some weak dependence on n in the third decimal). Thus vast
majority of mutations (roughly 97.5%) have no consequence on the fitness,
while mutations in the essential interactions are typically deleterious.

One can also interpret the normalized histogram of essential interactions
as the in-degree distribution for the associated GRN. In Fig. 4 (right) one
can see that the distribution of in-going essential connections qualitatively
follows an exponential distribution, which is in agreement with biological
findings [6]. On the other hand, the out-degree distribution is of the power
law nature, indicating that a small number of TFs regulate a large number
of target genes, whereas most TFs regulate few or no target genes [24].
Particularly, such differences between in- and out-degree distribution have
been observed for E. coli [4] and yeast (S. cerevisiae) [25].
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Fig. 4. Left: Probability distribution of the number of essential interactions per
row of the matrix specifying a viable network for N = 20, L = 12, ε = 2.0 and
a range of values of n. Right: The same statistics can be also interpreted as in-
degree distribution. Data is presented for n = 10000 with the dashed line being an
exponential fit.

Additionally, from a given viable genotype we can extract the essential
interactions and construct the corresponding GRN. Outcome of such a pro-
cedure for a small system with N = 8 and all genes being expressed in the
target phenotype is shown in Fig. 5. At this point one remark should be
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made, up to now we have studied GRNs obtained from Metropolis sampling
with point mutations made only in strings coding DNA regulatory regions
with strings coding TFs being fixed; TF evolve generally slowly compared
to DNA binding sites [21]. Notice that when a TF is modified in our frame-
work, a whole column of the matrix W is affected at once. Therefore, we do
not observe any selection pressure on the number of essential interactions
per column (out-degree of a given gene). Particularly, the interesting prob-
lem is to see how the number of out-going links changes in GRN when we
simulate a population of genotypes against mutations in TF coding genes.
Since mutations in any TF which is associated with at least one essential
interaction are highly deleterious, the selection condition favors GRNs with
essential links unevenly distributed among columns. From this qualitative
argumentation we can see that broad out-degree distributions should be fa-
vored, and indeed by doing numerical calculations [3] we arrive at the same
conclusion.
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Fig. 5. Left: Genotype with associated weight matrix W for N = 8, L = 12, ε = 2.0
and n = 1000. The dark (brownish) squares represent strong interactions. Right:
GRN extracted from this genotype with only essential interactions indicated.

5. Conclusions and outlooks

We have considered a relatively simple model of GRNs in which molecu-
lar information is used to obtain a matrix of interactions between DNA bind-
ing sites and TF molecules. Furthermore, based on this matrix we proposed
a way to find a gene expression pattern reflecting cell’s function. Using the
dynamics defined in Eq. (4) and Metropolis sampling method we obtained
under mutation–selection balance the ensemble of viable genotypes. By in-
vestigating the statistical properties of the GRNs we found many similarities
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with real regulatory networks: the obtained networks are sparse with nar-
row in-degree and broad out-degree, network robustness is heterogeneously
distributed (mainly only mutations in essential interactions are deleterious),
and the results hold for parameters in biologically relevant range.

Although our modeling involves certain idealizations, we have insisted
on including interactions through the biophysical mechanism of molecular
recognition and affinity. The resulting reasonable GRN topology is the con-
sequence of several causes: the viability constraint, the low probability of a
small mismatch between TF and the binding site on the DNA, the size L of
this segment, the not-too-small spacing (in units of kBT ) between the energy
levels that determine the strength of TF-DNA interactions, and finally the
value of the parameter n itself which enters the dynamics.

In addition, by introducing the concept of “essential interactions” we are
able to quantify the sparsity level of GRNs, and we find that in most cases
there is only one “large” interaction per gene although networks are still
evolvable and can reach very diverse topologies. Basically, our principal re-
sult is that regulatory networks are as sparse as possible being compatible
with a given function. We have also generalised the model by introducing
repressors and more than one target phenotype, and the preliminary results
suggest the above rule still holds. Furthermore, in the extended model we
observe various positive and negative circuits [26, 27] which occurrence de-
pends on the network function that can be realised by either multiple target
phenotypes or cyclic like behaviour.
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