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Mathematical modeling of tumor development has become a real hype

within the last decade. The abundance of mathematical models has created
a great need for the validation of their biological relevance. Recently, in or-
der to characterize the tumor growth dynamics, Brú et al. have determined
some statistical properties of both in vitro and in vivo solid tumor-surfaces
by using fractal scaling analysis. Surprisingly, for all tumor surfaces, the
statistical observables converged to a unique set of critical exponents which
indicates some common features of tumor growth dynamics (linear growth
rate, growth activity limited to the outer rim of the tumor mass and diffu-
sion of newborn tumor cells on the surface from lower to higher curvature
regions, typical of Molecular Beam Epitaxy (MBE) Universality). Here,
we develop and analyze a lattice-gas cellular automaton (LGCA) model of
solid tumor growth. Random walk dynamics are assumed for tumor cell
migration and a density-dependent birth process describes the cell mitotic
dynamics. Fractal scaling analysis shows that for any parameter variation
the model interface dynamic follows Edward–Wilkinson (EW) Universal-
ity, which differs from experimental findings. However, the model recovers
some features, i.e. linear growth rate for tumor size and proliferative ac-
tivity restricted to the outer layer, observed in experiments.
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1. Introduction

At the beginning of 60s Eden formulate one of the first discrete au-
tomata model, in attempting to describe solid tumor growth [1]. Recently,
there is a boom of new mathematical models describing various aspects of
tumor growth and development. Different mathematical models have been
developed in order to describe features of tumor development, like front ve-
locity, necrotic core and proliferative rim dynamics, interactions with the
extracellular medium and vasculogenesis, with and without the exposure
to chemicals and radiation [2, 3, 4]. A central problem in the mathemati-
cal modeling of biological processes is the evaluation of its model biological
relevance. In particular, for the problem of tumor development numerous
models have been proposed but the methods to check their consistency with
experiments or medical observations are sometimes ambiguous or qualita-
tive. Researchers have tried to compare different characteristics of their
models such as growth speed, spatio-temporal pattern formation, tumor cell
population evolution with in vivo or in vitro observations. Brú et al. [6]
have claimed, on the evidence of their experimental investigation of in vivo
and in vitro tumor samples, that all avascular solid tumors share the same
fractal surface dynamics [5, 6, 7]. In particular, these exponents are typi-
cal of the MBE/MH (Molecular Surface Dynamic/Mullins–Herring) surface
dynamics [8], characterized by particles/cells generated (or deposited) ran-
domly on the surface and then relaxing towards the highest surface curvature
region. This characterization supports the following conclusions on solid tu-
mor growth dynamic: linear growth rate, cell replication activity limited to
the outer rim of the tumor mass and displacement of newborn tumor cells
on the surface preferably in lower curvature regions. Fractal scaling could
be definitively an efficient tool to evaluate tumor models, and to link their
mathematical assumptions with real biological properties. In the present
study, we analyze a discrete model with diffusive-kinetic dynamics, i.e. cells
perform random walks and undergo birth/death processes. These are two
classical assumptions and a lot of continuous [9, 10, 11] and discrete [12]
tumor growth models are based on them. Hatzikirou et al. [13, 14] have
developed a tumor growth lattice-gas cellular automaton (LGCA) model,
which incorporates these diffusion-kinetic assumptions. In this paper, we
analyze the growing front in model simulations by using fractal scaling anal-
ysis. The main goal is to calculate numerically the statistical observables
that allow for the extraction of the critical scaling exponents and to relate
them to the proper universality class. We investigate the exponents’ depen-
dence on different lattices (square and hexagonal), and on relevant model
parameters. Numerical analysis indicates that diffusive dynamics induces
the tumor surface developing according to Edward–Wilkinson (EW) Uni-
versality, which is not consistent with real in vitro and in vivo tumors. To
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obtain the correct MBE/MH Universality [15] it is necessary to introduce
adhesive cell–cell interactions. The paper is organized in the following way:
first, we introduce briefly the model, describing its main assumptions and
formalizing the mathematical notation. Then we give a basic description
of fractal scaling analysis. In the following, we present numerical results
about surface critical exponents’ extraction, and investigate the compati-
bility of our model with some appropriate universality class. Finally, some
suggestions for future tumor modeling approaches are given.

2. The model

We consider a lattice-gas cellular automaton [16] defined on a two-di-
mensional regular lattice L = Lx × Ly ∈ Z2, where Lx, Ly are the lattice
dimensions. Let b denote the coordination number of the lattice, that is
b = 4 for a square lattice and b = 6 for a hexagonal lattice, respectively.
Cells move on the lattice with discrete velocities, i.e. they hop at each
time step from a given node to a neighboring one, as determined by the
cell velocity. The set of velocities for the square lattice is represented by

the two-dimensional channel velocity vectors c1 =
(

1
0

)
, c2 =

(
0
1

)
,

c3 =
(
−1
0

)
, c4 =

(
0
−1

)
, c5 =

(
0
0

)
, while for the hexagonal lattice

it is c1 =
(

1/2√
3/2

)
, c2 =

(
1
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)
, c3 =

(
1/2
−
√

3/2

)
, c4 =

(
−1/2
−
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3/2

)
,

c6 =
(
−1
0

)
, c7 =

(
−1/2√

3/2

)
, c8 =

(
0
0

)
. In each of these channels,

we impose an exclusion principle, i.e. we allow at most one cell per channel.
We denote by b̃ = b + b0 the total number of channels per node which
can be occupied simultaneously, where b0 is the number of channels with
zero velocity (rest channels). We represent the channel occupancy by a
Boolean random variable called occupation number ηi(r, t) ∈ {0, 1}, where
i = 1, . . . , b̃, r = (rx, ry) ∈ Z2 the spatial variable and t ∈ N the time
variable. The b̃-dimensional vector

η(r, t) := (η1(r, t), ..., ηb̃(r, t)) ∈ S

is called node configuration and S = {0, 1}b̃ the automaton state space (see
Fig. 1). We define a total node density as the sum of node densities

n(r, t) :=
b̃∑
i=1

ηi(r, t) .
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The global configuration is given by

η(t) := (η(r, t))r∈L .

Fig. 1. Example of node configuration in a lattice-gas cellular automaton: channels
of node r in a two-dimensional square lattice (b = 4) with one rest channel (b0 = 1).
Gray dots denote the presence of a cell in the respective channel.

2.1. LGCA dynamics

In our automaton model, cell dynamics are defined by rules. Automaton
dynamics arise from the repetition of three rules (operators): propagation
(P ), reorientation (O) and growth (R). In particular, the combination of
reorientation and propagation operators describe [14] cell motion while the
growth operator controls the change of the local number of cells on a node.
In the following, we describe these operators in detail.

2.1.1. Propagation (P )

The propagation step is deterministic and it is governed by an opera-
tor P . By the application of P all cells are transported simultaneously to
nodes in the direction of their velocity, i.e. a cell residing in channel (r, ci)
at time k is moved to a neighboring channel (r +mci, ci) during one time
step. Here, m ∈ N determines the speed and mci is the translocation of cell.
Cells residing on rest channels do not move since they have zero velocity.
We note that this operator is mass and momentum conserving.

2.1.2. Reorientation (O)

The reorientation operator is responsible for the redistribution of cells
among the velocity channels of a node, providing a new node velocity dis-
tribution. Here, we assume that cells perform random walks. A possible
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choice for the corresponding transition probabilities is

P
(
η → ηO

)
(r, t) =

1
Z
δ
(
n(r, t), nO(r, t)

)
, (1)

where Z =
∑
ηO(r,t) δ(n(r, k), nO(r, k)) is a normalization factor. The Kro-

necker δ guarantees the mass conservation of this operator. Simply, we
choose one configuration at random among those with the same number of
cells as the initial one (see Fig. 2). The particular choice for the reorienta-
tion operator is one out of various possible ways to describe random motion
by means of LGCA models [16]. This choice greatly simplifies the possible
analytical derivation of the equations describing the meso- and macroscopic
evolution of the automaton [13,14].

Fig. 2. Reorientation rule of random motion. The first column corresponds to the
number of cells on a node n(r, k) at a time k, with capacity b̃ = 4. The middle
column indicates all the possible cell configurations on node and the transition
probability of obtaining a certain configuration is shown in the right column.

2.1.3. Cell kinetics (R)

In our model we take into account only mitotic processes (and neglect
cell death). We assume that tumor cells can divide only if they have just a
few competitors on the node, i.e. the cancer node density n(r, t) should be
lower than a threshold θM < b̃. The probability of mitosis rM is a function
of tumor node density

nR(r, t) :=
{
n(r, t) + 1, w.p. rM if n(r, t) ≤ θM
n(r, t) , else (2)

where w.p. denotes “with probability”. In practice, at time t one adds a
cell in the node with coordinates r in a randomly chosen free channel, with
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probability rM. In a more complete formulation an additional population
of “necrotic cells” (dead cells) model is considered [13]. These “interact”
with tumor cells when the total node density exceeds θN, assuming that the
nutrient consumption is critical and inducing tumor cell necrosis. Generally,
the precise definition of these interactions is a difficult and ambitious task.
For in vivo tumors the complexity of the interacting phenomena cannot be
captured easily by computational models. However, necrotic core tumor
interactions are not relevant in analyzing tumor front fluctuation dynamics
since necrosis typically occurs some distance away from the tumor front and
in our work it has been disregarded.

3. Basics of fractal scaling analysis

Physical systems such as surfaces growing on a substrate by a par-
ticle deposition–relaxation process often have a fractal self-affine nature;
such systems have been mathematically described both by using continu-
ous Langevin equations and discrete models [17]. The main information
that can be extracted from these systems is the spatio-temporal evolution
of some statistical observables, such as the dispersion of the surface height
around the mean value calculated on the whole surface. These statistical
observables typically have a power-law dependence in space and time. The
dominant dynamic process may be characterized by measuring the value of
the power-laws’ exponents, also called scaling critical exponents (for details
see [18]). Taking into consideration the fractal scaling analysis of the exper-
imental results found by Brú et al. [5, 6], here we describe a way to define
a surface for the propagating front of a 2D tumor growth LGCA model,
and the respective method of scaling exponents measurements, trying to es-
tablish relations between the local microscopic rules (birth/death process,
re-orientation process) and the surface behavior dynamics (defined by the
critical exponents).

A self-affine surface is represented by a height function h(~x, t)1, that is
the height coordinate ry of the surface for the substrate point described by
coordinates ~x at time t, having the scaling properties

h(λ~x, ωt) = λαωβh(~x, t) , (3)

where α, β and z = α
β are the scaling exponent; z governs the characteristic

surface correlation length dynamic ξ ∝ t
1
z . β is called the growth exponent,

while α is the roughness exponent and z is the so-called dynamic exponent.

1 Alternatively, it is defined as the furthermost occupied node in Ly direction, for each
rx ∈ Lx.
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This scaling exponent can be measured by the local surface width W (l, t)
and the correlation function C(l, t) defined as

W (l, t) =
〈〈√

〈h2〉l − 〈h〉2l

〉
L

〉
r

,

C(l, t) =

√〈〈(
h(~x)− h

(
~x+~l

))2
〉
L

〉
r

, (4)

where 〈·〉l is the mean value over a window of size l, 〈·〉L over different
windows of the system of total size L 2, and 〈·〉r over different replicas r
(i.e. system realizations), see Fig. 3. These two quantities follow similar

x
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Fig. 3. The correlation function C2(l, t) = 〈(h(x1, t)−h(x2 = x1 + l, t))2〉 is defined
as the mean square height difference among all pairs of surface points (x, y =
h(x, t)) placed at a distance d from x. The local surface width W (l, t) is the mean
of the local variances of h(x), calculated around a mean height 〈h(x)〉l over a
domain of fixed size l.

power laws in t and l

C(l, t) ≈W (l, t) ∝ tβf
(
l

ξ

)
, (5)

where f
(
l
ξ

)
is the scaling function, dependent only on the value of the

correlations size with respect to the system size

f(u) =
{
uαloc u� 1
const. u� 1 . (6)

2 More rigorous definitions could be given by 〈f〉l,x =
R x+l

x
f(x′)

`
1
l

´
dx′ and

〈〈f〉l,x〉L =
R L

0
〈f〉l,x

`
1
L

´
dx.
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The exponent αloc is called the local roughness exponent. There are two
main categories of scaling behavior. If α < 1, this exponent describes both
the scaling of large and small-length scales, and α = αloc. For this case C(l, t)
and W (l, t) increase until a time tthr, when the characteristic correlation
length ξ � l, and they reach a threshold value Wthr ≈ Cthr ∝ l, as one can
observe for example in Fig. 5. On the contrary, when α > 1 the small-length
scales show a trivial scaling with αloc = 1. This generic picture includes most
of the scaling behaviors found so far in models and experiments. Tumor
growth has been experimentally shown to obey an infrequent superrough
dynamics [5,6], characterized by αloc = 1 and α > 1. Using the corresponding
scaling function of equation 5, one can see that the long time behavior is
C(l, t) ∼ lαloctβ

? (instead of the standard behavior C(l, t) ∼ lα), where β?
is called the anomalous growth exponent, β? = (α − αloc)/z. Therefore,
anomalous fluctuations at small scales are particularly relevant in this case.
A useful observable measuring α is the Power Spectrum of h(~x, t), namely
the spatial Fourier Transform

S
(
~k, t
)

=
〈
ĥ
(
~k, t
)
, ĥ
(
−~k, t

)〉
r

= k−(2α+1)s(kξ) , (7)

where the scaling function has the form

s(u) =
{
u2α+1 u� 1
const. u� 1 . (8)

The most general stochastic Langevin equation describing the dynamic of
interface growth function h(~x, t) is

∂h

∂t
= G(~x, h, t) + F (~x, t) , (9)

where F (~x, t) term is responsible for the addition/deposition, in our case
“reproduction”, of new cells on the surface and G(~x, h, t) dictates their move-
ments and interactions on it. Typically, F (~x, t) is composed of a constant
growth rate f plus a white noise ζ(~x, t), having its first two moments

〈ζ(~x, t)〉 = 0 ,〈
ζ(~x, t)ζ

(
~x′, t′

)〉
= 2Aδd

(
~x− ~x′

)
δ(t− t′) , (10)

on the other hand G(~x, h, t) is a function of time t, spatial coordinates ~x and
surface profile h and it is generally represented by a differential operator. In
some simple cases by means of heuristic scaling arguments, deriving spectral
properties or applying renormalization group theory, is possible to derive the
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theoretical values of the scaling exponents, that depends in general on the
geometrical dimension of the surface d. In Table I the universality classes
discussed in our work are defined in terms of their set of critical exponents.

While Edward–Wilkinson (EW) dynamic has a diffusive interaction term,
typical of particles random motion. On the other hand, the fourth order term
corresponds to the Molecular Beam Epitaxy/Mullins–Herring (MBE/MH)
Universality, whose scaling exponents are compatibles with the ones mea-
sured by Brú et al. [6].

TABLE I

Edward–Wilkinson (EW) and Molecular Beam Epitaxy/Mullins–Herring
(MBE/MH) universality classes, defined in terms of their set of critical exponents
α, β and z. The value of critical exponents depend on the geometrical dimension
d of the surface.

G(~x, h, t) α β z

EW D∇2h 2−d
2

2−d
4 2

MBE/MH −K∇4h 4−d
2

4−d
8 4

4. Numerical analysis and results

We have implemented the model described in Sec. 2 on a 2D lattice (b = 4
velocity channels) and hexagonal lattice (b = 6 velocity channels) lattice
L = Lx × Ly, with |Lx| = |Ly| = {1024, 2048}3, lateral periodic boundary
conditions and reflecting boundary at Lx (e.g. a cell in a velocity channel
pointing towards the boundary, is placed — reflected — in the opposite
velocity channel). The initial conditions are defined as n((rx, 1), 0) = 1,
∀rx ∈ Lx. We consider principally the case in which the mitotic threshold
is half of the maximum node density, i.e. θM = b̃/2, and the number of rest
channels b0 = 4.

The height function h(x, t) at x is defined as the y coordinate of the
lattice site with the last nonzero cell density at time t, measuring the density
of the x-th column starting from ry = 1, see Fig. 4. Alternative definitions
of the height function have been considered for lattice gas or percolation
front [19,20], producing multivalued surfaces with overhangs. Our definition
can be considered as one of the most simplest in order to perform dynamic
scaling, and has a good consistency at least in the case of compact tumors
observed at short scale, in linear approximation. In the case of more jagged

3 The notation | · | denotes the cardinality of a given set, i.e. |Lx| = 1024 when
Lx = [1, 1024].
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profiles and non linear geometries, more sophisticated definition of the height
function have to be considered to obtain a consistent scaling, able to identify
the universality class correctly [5].
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Fig. 4. Top: Front cell density profile (left) and height function h(x, t) (right) for
the LGCA model (parameters θM = 5, rM = 0.1) on a hexagonal lattice (number
of rest channels b0 = 4) with x size L = 1024. Bottom: Mitotic events at a given
time step (left and right figure) and their frequency distribution vs. the height level
y = h(x). Mitotic activity is highly concentrated on a thin front layer, consistent
with the hypothesis [6] about linear growth concentrated on the outer rim of the
tumor mass.
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In all cases studied, the front velocity, which is defined as the slope of the
mean height 〈h(t)〉x, was found to be constant (see [13]). We note that the
height function h(x, t) provides the actual position of the front, as in Fig. 4
up-right. The cell proliferation activity is concentrated within a narrow
region close to the front (see the two lower graphs of Fig. 4). The location
of the proliferation events is in good agreement with the observations of in
vivo and in vitro tumors [6].

The surface height function h(x, t) exhibits non trivial spatio-temporal
scaling exponents when varying the mitotic rate rM over a broad range (up
to 3 orders of magnitude). The scaling exponent β = α

z is evaluated by
direct calculation of W (L, t) time slope, while α and z are measured by the
data collapse of W (·, t) and C(·, t) time series (see Eq. (5)). The fractal
scaling analysis shows that the exponents fit well with EW universality, as
it is shown in Figs. 5–7. Variations of the mitotic threshold θM and of the
number of rest channels b0 does not seem to affect universality, as one can
see in Fig. 6. Some differences are observed due to the lattice topology. In
particular, on the hexagonal lattice the global widthW (L, t), after an initial
transient, grows with an exponent typical of the EW regime for a broad range
of mitotic rates rM ∈ (0.01, 0.5). The stationary regime is observed in our
simulations even in the case of small system size, i.e. Lx = 1024. However, in
the square lattice it is more difficult to observe the final growth — stationary
— regime, due to a very long transient that follows KPZ dynamics, with
β = 1

3 , as a result of the square lattice induced symmetry (data not shown),
particularly persistent for high rM. The surface correlation functions C(l, t)
exhibit also an EW-compatible regime. Moreover, the spatial correlations
collapse in a suitable way using both the EW universality spatial α and
temporal β exponents, at least for long spatial distances l. The spatial
correlations are mainly developing due to the proliferation events, since the
random walk dynamics induce only uncorrelated spatial structures. Thus,
we can state that the low mitotic probabilities rM, in combination with a
short domain size, are responsible for the lack of a sufficiently large number
of proliferative events for the building up of significant spatial correlations.
From the other hand, with high rM fluctuations in surface roughness reaches
saturation rapidly, thus also in this case finite system size play a main role
in the observation of the EW regime in the temporal scaling of global width
W (L, t). Thus in the limit of low mitotic probability and large system size,
the surface front fluctuations increase as a power law with a typical EW
exponent for long times.
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Fig. 5. Global surface widthW (L, t) (top) and its scaling with the EW universality
β exponent (bottom), for different lattice geometries, system sizes and mitotic rates
rM. The mitotic threshold is set to θM = b̃/2. For all cases global width growth
is compatible with the typical EW universality scaling Ansatz W (L, t) ∝ tβ with
β = 1

4 . It is possible, moreover, to observe for size L = 1024 the transition between
growth regime and threshold regime, as predicted by scaling Ansatz in Eqs. (5) and
(6), when the characteristic correlation length reaches the system size. Each curve
has been averaged over 50 different realizations (10 realizations for b0 = 1). Curves
corresponding to different rM are shifted in y direction for a better visualization.

5. Conclusions and perspectives

In this study, motivated by the work of Brú et al. [6], we used frac-
tal scaling analysis to evaluate the suitability of some common assumptions
in tumor growth modeling. In particular, we tested the hypothesis that
avascular tumor dynamics may emerge from the combination of random cell
motion coupled with a stochastic birth process. The corresponding model
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Fig. 6. Global surface widthW (L, t) and its scaling with the EW universality β ex-
ponent (inset), for systems in a hexagonal lattice, with different mitotic thresholds
θM and mitotic rates rM. Global width growth is compatible with the typical EW
universality scaling AnsatzW (L, t) ∝ tβ with β = 1

4 . Each curve has been averaged
over 10 realizations. Curves are shifted in y direction for a better visualization.

Fig. 7. Collapse of surface correlation functions C(l, t) (Inset: original unscaled
functions) calculated at different logarithmic times, for a system on a hexagonal
lattice, with L = 2048, b0 = 4, using EW universality exponents. Data collapse
indicates the compatibility of the surface dynamics with the EW universality scaling
Ansatz C(l, t) ∝ lαf(l/t1/z), described in Sec. 3, at least for l > 50. Each curve
has been averaged over 30 different realizations.

is motivated by a recently developed LGCA model [13, 14], which can ef-
fectively describe the avascular growth phase. The key idea is to check if
the resulting spatio-temporal dynamics of the front, described in terms of
fractal scaling exponents, match with the ones found by Brú et al. [6].
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We have considered our model in 2D with appropriate periodic cylindri-
cal boundary conditions, that allow for the development of a well defined 1D
front, described by a corresponding height function h(x, t). Then we have
measured the self-affine properties of the increasing tumor border in our sim-
ulations by means of fractal scaling analysis. Our study provides numerical
evidence that our virtual tumor surfaces are compatible with the EW univer-
sality, which describes, in the context of surface growth by random particle
deposition, a relaxation process that moves the particles towards the local
height gradient minimum. It is worth pointing out that the spatially ho-
mogeneous migration/proliferation dynamic rules produce non-trivial front
structures, usually obtained by one-dimensional models only involving sur-
face particle interactions.

This model is a very simplified view of tumor growth. Actually microen-
vironment, by means of diffusive signals (nutrients, growth factors etc.),
ECM components or other stroma interactions, plays a significant role in
tumor development. Another point we want to stress out concerns the ac-
tual experimental setup limitations of Brú et al. [6] in the measure of critical
exponents. In fact, critical properties are extracted in in vivo samples from
2D cut sections of a 3D tumor mass, while in in vitro case the original sys-
tems grow just on a plane on the Petri dish. Then one of the main criticisms
to their work is related to the finding, in both cases, of 1D MBE universality
scaling exponents, measured on a linear front, where a real tumor grows in
a three dimensional space, with a 2D spherical surface front. This is still
an interesting open question, beyond the scope of this work, so we limited
our analysis to 2D planar systems, mimicking better in vitro experiments,
at least at short scales, where an arc segment can be approximated with
a straight line. There are a few studies on self-affine surface growth that
consider cut section or geometries different from the Euclidean [7,21]. Then
further investigations are required in order to develop scaling techniques for
experimental and numerical analysis of tumor front growing in nonlinear
geometries (e.g. radial growth).

Implementing our model within a hexagonal lattice geometry has some
advantages with respect to a square lattice, such as higher order directional
isotropy. This effect is expressed in the front dynamics on hexagonal lattices
as a shorter temporal dynamic transient, a prominent asymptotic growth
dynamics under both size and mitotic rate modulations, and the shorter
equilibration of the relevant surface statistical observables. On the contrary,
front dynamic on square lattices are characterized by a long rM-dependent
KPZ transient.

Our model predicts two of the solid tumor dynamic features claimed by
Brú et al. [6], i.e. proliferation actvity concentrated at the outer rim of the
tumor bulk and a linear front velocity. However, the universality class of the
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surface front dynamics found here is not the MBE/HM found by Brú et al.
[6, 5]. Microscopically, the traditional view on MBE dynamics imposes a
particle relaxation process which directs particles to the minimum of the
surface curvature. The latter suggests us to implement a different reorienta-
tion rule, for example dependent on a function of local cell density gradients,
in order to find the universality class characterizing real tumors. Please note
that MBE dynamics describe a non-local mechanism of motion, in contrast
to EW, whereas the curvature “information” is non-local, i.e. refers to an
extended neighborhood. In a following study, we will introduce a mechanism
that provides the desired universality for the surface dynamics. Finally, an-
other very intriguing and important step is the derivation of a coarse-grained
partial differential equation for density ρ(~x, t) in d dimensions, obtained from
the microscopic model, by use of standard mean-field techniques [13,14,22],
and the calculation of the corresponding Langevin equation describing the
(d− 1)-dimensional surface front dynamics for h(x, t).
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