
Vol. 4 (2011) Acta Physica Polonica B Proceedings Supplement No 2

GCA-w ALGORITHMS FOR TRAFFIC SIMULATION∗

Rolf Hoffmann

Technische Universität Darmstadt, FG Rechnerarchitektur
Hochschulstr. 10, 64289 Darmstadt, Germany
hoffmann@ra.informatik.tu-darmstadt.de

(Received March 31, 2011)

The GCA-w model (Global Cellular Automata with write access) is an
extension of the GCA (Global Cellular Automata) model, which is based on
the cellular automata model (CA). Whereas the CA model uses static links
to local neighbors, the GCA model uses dynamic links to potentially global
neighbors. The GCA-w model is a further extension that allows modifying
the neighbors’ states. Thereby, neighbors can dynamically be activated or
deactivated. Algorithms can be described more concisely and may execute
more efficiently because redundant computations can be avoided. Modeling
traffic flow is a good example showing the usefulness of the GCA-w model.
The Nagel–Schreckenberg algorithm for traffic simulation is first described
as CA and GCA, and then transformed into the GCA-w model. This
algorithm is “exclusive-write”, meaning that no write conflicts have to be
resolved. Furthermore, this algorithm is extended, allowing to deactivate
and to activate cars stuck in a traffic jam in order to save computation time
and energy.

DOI:10.5506/APhysPolBSupp.4.183
PACS numbers: 87.17.Aa, 92.60.hk, 87.18.Hf

1. Introduction

The GCA-w parallel computing model (GCA with write access) intro-
duced in [2, 3, 4] is an extension of the GCA (Global Cellular Automata)
model [5,6], which in turn is an extension of the CA model. A cell of a GCA
can dynamically establish links to any of its global neighbors, whereas a cell
of a CA uses only the fixed links to its local neighbors. The CA and GCA
model do not allow modifying the state of a neighbor. Therefore, no write
conflict can occur, simplifying implementations in hardware or in software.
However, for applications, where the amount of active cells in the whole

∗ Presented at the 2nd Summer Solstice International Conference on Discrete Models
of Complex Systems, Nancy, France, June 16–18, 2010.

(183)

184 R. Hoffmann

field is low or is varying over time, or the locations of the active cells are
changing, the GCA-w model is a better choice. The GCA-w model allows
writing information to its neighbors. This feature is very important because
information can actively be transferred to a destination, and the activity of
the destination can be switched on or off. Therefore, the GCA-w model is
very useful for the description of problems with moving particles or moving
agents, or problems with dynamic activities.

Several GCA-w applications were already described in [3, 4] (one-to-all
communication, synchronization, moving agents, different random walks of
particles, pointer inversion, sorting with pointers, Pascal’s Triangle). The
purpose of this contributions is not to show all possible features and appli-
cations of the model, but rather to show another practical application that
can easily be implemented because no write conflicts occur.

It will be shown that the CA based traffic simulation rule (Nagel
–Schreckenberg [1]) can easier be modeled and more efficiently be executed
using the GCA-w model. This problem is perfectly suited to the GCA-w
model because (i) the cars decide on their own upon their next location,
(ii) cars are not moving to the same location (car collisions are excluded
by the rules, no conflicts will occur), (iii) the number of active cells (cars)
is usually much lower than the number of passive cells (spaces), and (iv)
waiting cars can be deactivated and activated again.

1.1. Informal description of the GCA-w model

Fig. 1 shows the general idea of the GCA-w model: Each cell C is dynam-
ically connected via links hi to other cells, in the example to A, B, D. Cell C

B

A C D

B

A C D
h
1

h
2

h
3

h
1

h
2

h
3

B

A C D

B

A C D
h
1

h
2

h
3

h
1

h
2

h
3

Fig. 1. A 2-D GCA-w example with three links per cell: Each cell is dynamically
connected to a global (or locally restricted) set of neighbors (gray), only the activity
of the center cell C is shown. The state of C including the links hi, and the states of
its neighbors can be changed (gray to black) by a local rule. Thereby, information
can be transferred from C to the current neighbors A, B, D, and the activity of the
neighbors may be changed. Write conflicts may occur, e.g. if C itself and other
cells try to update C at the same time.

GCA-w Algorithms for Traffic Simulation 185

updates its own state and the states of its neighbors A, B, D. Thereby the
links hi are also updated. In the following, only one link per cell is assumed,
which seems to be sufficient to model most applications. In addition, in the
following, the cells will be arranged in a 1-D fashion, although n-D fields
can easily be handled by using an n-D indexing scheme.

A potential difficulty is that write conflicts may appear. The worst case
scenario is that all cells want to write onto the same cell. In order to reduce
the implementation effort to resolve the conflicts, the GCA-w rules should
be designed in such a way that either no conflict will occur, or that the
amount of conflicts is low or restricted, or that the conflicts can be resolved
within a local neighborhood.

In Fig. 2 some situations are depicted, showing some possible interactions
(reads and writes) between cells. In situation (b) cell i reads j, and modifies
its own state and the state of its neighbor j (the basic “idea” of GCA-w).
In situation (c) cell i modifies itself and is modified by j and k, a conflict
with three write accesses occurs that has to be resolved. Situation (d) is a
“exclusive-write situation”: Cells i and j exchange data, and cell p modifies
cell k and p. No write conflicts occur. In the following the GCA-w model is
described in detail.

i j k

r+w

i j

r

i j

r

w w

r+w

w
r+w

ki j

r+w

r+w

p

w

r+w

(a) (b) (c) (d)

i j k

r+w

i j

r

i j

r

w w

r+w

w
r+w

ki j

r+w

r+w

p

w

r+w

(a) (b) (c) (d)

Fig. 2. Some read/write situations: (a) Cell i reads from cell j and modifies its own
state; (b) Cell i reads j and modifies its own state and the state of its neighbor
j (the basic “idea” of GCA-w); (c) Cell i modifies itself and is modified by cell j
and k, but there occurs a conflict of three write accesses which has to be resolved;
(d) Cell i modifies j and vice versa. Cell p modifies cell k and p. No write conflicts
occur (exclusive write situation).

1.2. Formal description of the GCA-w model

Global Cellular Automata with Write Access: GCA-w= (I, A,B, δ, h, f, g, e)

Index Set : I = {0, 1, . . . , i, . . . , N − 1} (1)
Active States :A = {a1, a2, . . . , an} (2)
Passive States :B = {b1, b2, . . . , bm} (3)

186 R. Hoffmann

Don′t−Write− Symbol respectively Dead− State : δ (4)
States :Q = A ∪B ∪ {δ} (5)
Configurations :QN (6)
A Configuration :L = (q0, q1, . . . , qi, . . . , qN−1) ∈ QN , i ∈ I (7)
Neighbor′s Address (in case of absolute addressing) h(i, q) :
h : I ×Q→ I (8)
Neighbor′s Address (in case of relative addressing) hrel(i, q) :

hrel : I ×Q→ Irel = {0,±1,±2, . . . ,±(N − 1)} (9)
such that h(i, q) = (i+ hrel(i, q))mod N (10)
Local− Rule f(i, q, q∗), q∗ = neighbor′s state : f : I ×Q×Q→ Q (11)
Write− Rule g(i, q, q∗) : g : I ×Q×Q→ Q (12)
Conflict− Rule e(i, f, g0, g1, . . . , gj , . . . , gN−1) : e : I ×QN+1 → Q (13)

Rule Application (Synchronous Updating) ∀i ∈ I:

qi :=

 e(i, f(i, qi, qh(i,qi)), g
0
→i, . . . , g

j
→i, . . . , g

N−1
→i) IF qi ∈ A (14)

δ IF qi = δ (15)
e(i, δ, g0

→i, . . . , g
j=i
→i = δ, . . . , gN−1

→i) IF qi ∈ B (16)

where ∀(i, j) ∈ I × I:

gj
→i =

{
g(j, qj , qh(j,qj)) IF h(j, qj) = i AND qj ∈ A (17)
δ IF h(j, qj) 6= i OR qj /∈ A (18)

The cells are arranged as a sequence 〈ai〉i∈I of cells, each cell is labeled
by i (1). The constant label can also be accessed by the cell itself in order to
use non-uniform rules depending on i. A cell can be in an active state (2),
or in a passive/inactive state (3), or in a dead-state δ. These three classes of
states are also called operational states. These three operational states are
distinguished in order to switch on or off the activity of cells and thereby
allowing to reduce the computational effort (dead cells are totally excluded
from the computation, because they remain dead forever, passive cells do
not compute themselves but can be activated by other cells). In addition,
passive or dead cells can be used to define a termination condition, e.g. if
all cells are dead, or if all cells are passive.

If a cell is active, it computes all local functions h, f, g, e. If a cell is
passive, it does not compute its local functions, but it can be switched into
another operational state from outside, e.g., it can be changed into active.
If a cell is dead, it will stay dead forever.

GCA-w Algorithms for Traffic Simulation 187

The symbol δ has two interpretations: (i) it denotes the command “Don’t
Write”, mainly used as output of the function g in order to avoid writing to
a neighbor, and further (ii) it encodes the dead-state.

The address function h defines the actual neighbor (absolute address,
index) in access (read and write), see also Fig. 3. The neighbor’s address
can also be determined by the use of the relative addressing function hrel

(9), (10). Relative addressing is often more adequate and more general to
describe spatial relative situations. The local rule f computes the cell’s new
state in case of no conflict (similar to a CA or GCA rule). The write-rule
computes a state value that can be written to another cell (including the own
cell, a special case). The conflict-rule is dedicated to resolve the conflicts. It
receives N + 1 messages (write-values), the own rule value f and messages
gj
→i from all cells j. Not all messages need to be activating: A non-activating
δ-message is interpreted as a Don’t Write-command, meaning that a sender j
does not want to write to a receiver i. A message is activating if the sender
j is active and the receiver i is selected (17). (As a special case, g may
produce δ; also f may produce δ.) If the sender is passive or the receiver is
not selected, then δ is received.

Fig. 3. Cell i selects cell j as neighbor using the address function h. The next own
data f and the write data g to be stored in j are computed by cell i. Write conflicts
may occur and have to be resolved by the local rule e.

Rule Application. All cells are updated synchronously in parallel. Only
cells that are not dead need to be updated. If the cell is active (14) then the
own rule value f and the messages gj

→i from all cells j have taken to be into

188 R. Hoffmann

account. In case that a δ-message (Don’t Write) is received, it is disregarded
by the conflict rule e. If the cell is passive (16) then the no computation of
h, f, g takes place and the default values f = δ and g = δ are assumed, and
no neighbor is selected. Although the cell is passive, the conflict-rule has to
be awake because there might arrive activating messages.

At a first glance the GCA-w model seems to be too complex because of
the conflicts and not very useful. But in many applications the complexity
of the conflict resolution can be reduced significantly, e.g. if the dynamic
neighborhood access patterns are restricted or are known in advance, or if the
rules are defined in an Exclusive-Write way, meaning that no write conflicts
are induced by the “GCA-w” algorithm (defined by the local functions). The
following car movement algorithm is such an exclusive-write algorithm.

In the case of modeling cars with conflicts, two phases have to be used:
(i) send concurrent requests which are resolved by the target cell, (ii) the
result of the arbitration is checked by the requesters, and only the winner will
move the car (delete on own position and write to target position). Another
solution would be the introduction of two subphases (for this case the model
has to be extended): (i) send concurrent requests to the target, evaluate the
arbitration and return acknowledge signals, (ii) the winner (acknowledge =
true) moves the car.

The main advantage of the model is that it allows to describe a certain
class of algorithms more concise, adequate and less redundant, because of
the write access and the activity control. In the CA or GCA model the
cells might be switched off, too, but they cannot be switched on again. The
GCA-w model can also be used to express indirect communication [12], e.g.
some cells may share a common communication cell they write information
onto to be distributed. Writing to another variable or object is a very
common technique, e.g. in classical programming languages, therefore this
technique is not new as such. The novel idea is to organize the computational
task logically as an array of cells with different operational states (active,
passive, dead) with write-access onto neighbors using only locally defined
rules.

The GCA model can be seen as a submodel of GCA-w. We receive the
GCA model from the GCA-w model by:

• No δ symbol is necessary, Q = A ∪B.

• Active cells can be passivated.

• No write access to the neighbor is allowed, therefore no write-rule g
and no conflict-rule e exists. Access to the neighbor is read-only, write
conflicts are not possible like in CA.

GCA-w Algorithms for Traffic Simulation 189

• The local-rule f is always used to update the state of the cell (q := f),
in case that the cell is active. In case that a cell is passive, it remains
passive and needs not to be recomputed.

1.3. Related work

The PSA model [9] of computation is a very general and powerful model
based on substitution rules. It allows also modifying the state of arbitrary
target cells (right side of the substitution) using a base and a context. In
relation to the GCA-w the base corresponds to the cell under consideration,
the context corresponds to the read neighbors and the right side corresponds
to the cells which are modified. There is also a relation to the CRCW-
PRAM [10,11] model. The PRAM model is based on a physical view with p
processors that have global memory access to physical data words whereas
the GCA-w is based on logical computing cells tailored to the application.
Another difference of the GCA-w model compared to PRAM is the direct
support of dynamic links and the rule based approach similar to the CA
model.

2. Modeling car movements

We will restrict our model to a single lane with cyclic boundary. N is
the length of the lane (number of cells). The maximal speed of a car is vmax.
Thus, a car can move from its current position i to the position i+ vmax at
most. The current speed of the car is v. The distance to the car in front is
d. A random variable R is available in each cell, changing from generation
to generation: R = 1 with probability p, and R = 0 with probability (1−p).
R is used to describe the probabilistic behavior of a driver not to accelerate
the car although it is possible, or to slow down the car randomly.

We distinguish Empty (E) cells and Agent (A) cells. In this context, the
term agent and car are used synonymously. We assume that the cars are
moving from the left to the right (cyclically).

We will also use the term CA, GCA, or GCA-w algorithm. A CA, GCA,
or GCA-w algorithm is given by the set of all cells, its associated rules, and
its initial configuration. Such an algorithm based on the local cell’s behavior
induces a certain global behavior on the whole state of all cells in the field.
In order to shorten the algorithms, the state of a synchronous variable in
generation t + 1 remains the same as in generation t if it is not changed
explicitly.

190 R. Hoffmann

2.1. Nagel–Schreckenberg algorithm and CA rule

The well-known algorithm [1] describes the movement of cars for traffic
simulations. The car has a speed v and computes in the steps A1–3 its new
speed v′. The new speed is then used in step B to move the car. Note that
all cars are moved synchronously in step B.

(A1) Acceleration. Increment the current speed v if the maximum speed
vmax of the car is not yet reached: v′ = min(v + 1, vmax).

(A2) Slowing down due to the car ahead. If the gap (distance) d to
the preceding car is less than the new speed, reduce it to the size of
the gap: v′ = min(v′, d).

(A3) Randomization. Reduce the new speed by one with probability p,
but not below zero: v′ = max(0, v′ −R).

(B) Movement. Move each car by v′ sites (next position is i + v′). Set
the next speed v (for the generation t + 1) to the new speed v′ just
computed in the current generation t through steps A1–3.

This algorithm can be described in a compact form by the following rule

v′ = max(0,min(v + 1, vmax, d)−R)) //compute new speed, not < 0
AgentAt[i+ v′]← AgentAt[i] //synchronous move and update
v[i+ v′]← v′[i]

Note that this rule is not a CA rule because the position of the cell
(representing a car) is changed. Nevertheless this rule can be transformed
into a CA rule: A cell is dynamically either of type E (Empty) or A (Agent).
An agent cell has to be connected to vmax neighbors to the right (the view
of the car in order to detect another car in front). An empty cell has to be
connected to vmax cells to the left in order to copy a car from the left that
wants to move to C. As a cell may be either of type E or A, the neighborhood
is the union of the two neighborhoods resulting in a neighborhood of ±vmax.
The cell’s structure is (Type, v, R). R is a random variable (0 or 1) that is
updated in every generation. Temporary variables are: the new speed v′,
the distance (gap) d to the preceding car, and the distance q from an empty
cell back to the following car. The resulting CA rule is the following:

if Type = A then
(a) determine d by checking all cells to the right within vmax
(b) compute new speed v’
(c) update: if v’ > 0 then Type <- E endif // delete agent
endif

GCA-w Algorithms for Traffic Simulation 191

if Type = E then
(a) Check all cells to the left within vmax in order to detect an

agent that wants to move to the own empty cell. Determine the
distance q to that agent (if there is any)

(b) If an agent is detected at position (i-q) then compute its new
speed v’ using v and R of cell (i-q); then compute its new
position (i-q+v’).

(c) if (v’ = q) then
// agent’s next position is the own position, (i-q+v’) = i
// copy agent, use v’ of cell at (i-q)
Type <- A, v <- (i-q).v’ // copy and sync update
endif

endif

Compared to the original algorithm, the CA rule is more complex and
not so easy to design and to understand. If the CA algorithm is implemented
as a sequential program, the worst case time complexity depends linearly on
the neighborhood distance, because an agent has to check the min(vmax, d)
cells to the right, and an empty cell has to check min(vmax, q) cells to the
left. Furthermore, the next speed v′ has to be computed by the agent, and
also by all the empty cells to the right of the agent within the neighborhood.
This redundant computation could be avoided by using a temporary variable
holding v′, which is computed only once (in phase 1), and then can be
accessed (in phase 2) by the empty cells in front of the agent, too.

If the rule were implemented fully parallel in hardware, a lot of hard-
ware resources would be needed because of the wide neighborhood (for real
traffic simulations vmax is around 10). Therefore, even in hardware a partial
sequential implementation would be more cost effective.

2.2. GCA algorithm

In [7] we have described a GCA algorithm for the same problem. The
advantage of this algorithm is that it is less time consuming because the
searching to the right and the searching to the left is not necessary, because
the relevant positions can directly be computed. The idea is to use a linked
list, which is synchronously updated. Each agent is linked to its agent in
front, and each empty cell is linked to its agent behind it. In contrast to
the description in [7], which is vector based, the algorithm presented here is
based on the cell’s local view. It is described as a GCA rule to be applied
to each cell. In addition, some of the rule conditions are described in more
detail.

The cell’s state is (Type, R, L, v, z). R is a random variable. L is the
link (pointer). The other variables are only relevant if the cell’s type is A.
The speed is stored in v(t), and z(t) holds the new speed v′(t) = v(t + 1),

192 R. Hoffmann

already pre-computed in the previous generation (t − 1), where t is the
current generation.

In the following GCA algorithm, absolute addressing is applied, denoted
by “:”. E.g. L+L : z means L[i]+z[L[i]], where i is the absolute cell’s index
(address). Fig. 4 shows for an example how the agents and empty cells are
connected.

if Type = E then
// E at i is skipped by A, and left cell of agent is E
if (L+L:z)>i and (L-1):Type = E then
// L will point to moved leftleft A
L <- (L-1):L + (L-1):L:z // (L-1):L points to leftleft A

// E is skipped by A, and left cell of agent is A
elseif (L+L:z)>i and (L-1):Type = A then
// L will point to leftleft A that is behind left A
L <- (L-1)

// E is not skipped by A
elseif (L+L:z)<i then
// L will point to left A
L <- L + L:z

// if A moves to E
elseif (L+L:z)=i then
Type <- A // agent is copied
// L will point to new position of A in front
L <- L:L + L:L:z // L:L points to following A
v <- L:z // precomputed speed L.z is copied from left A
// min(v+1, d, vmax), L.L points to A in front
z <- max(0, min(L:z + 1, L:L + L:L:z - 1, vmax) - R)
endif

endif

if Type = A then
// z>0 and left cell E : A moves
if z>0 and (L-1):Type = E then
Type <- E
// L will point to new position of following A
L <- (L-1):L + (L-1):L:z // (L-1):L points to following A

// z>0 and left cell A then A moves
elseif z>0 and (L-1):Type = E then
Type <- E
// L will point to left A that is directly behind
L <- (L-1)

GCA-w Algorithms for Traffic Simulation 193

// z=0 : A does not move
elseif z=0 then
// L will point to agent in front, moved by z
L <- L + L:z // L points to agent in front
v <- z // use precomputed speed
// min(z+1, d, vmax), L+L.z-1 = future dist. to agent in front
z <- max(0, min(1, L + L:z - 1, vmax) - R)
endif

endif

This rule is quite sophisticated and it was not so easy to design it. The
advantage of this rule compared to the CA rule is that the checking of all
the neighbors in the ±vmax neighborhood is not necessary because the entire
next cell state can directly be computed by the use of the links. Therefore,
this algorithm will run faster if it is sequentially simulated, especially if the
car density is low.

z

L

L.z

L

i

agent points to the agent in frontempty cells point

back to agent

next position i+z

Fig. 4. GCA algorithm. The new speed of the agent was computed in advance and
stored in the variable z. The agent will be situated at (i+z) in the next generation.

But there is still a weakness in this algorithm because all cells have to be
computed (O(N)) (redundant computations of the empty cells). Therefore,
a more effective GCA-w algorithm will be presented in the next section.

2.3. GCA-w algorithms

The GCA-w model allows writing to a neighbor. This feature is in par-
ticular useful for this problem because the movement of an agent can be de-
scribed by the cell with type A only. An agent can “beam” itself to the target
position and delete itself on the source position. The Nagel–Schreckenberg
algorithm is collision-free (no agent can move to the same site), and this
feature is preserved when this algorithm is mapped onto the GCA-w model.
No write conflicts can appear, and the implementation has not to care about
detecting or solving conflicts. Therefore, the hardware or software interpret-

194 R. Hoffmann

ing the algorithm can be kept simple. The GCA-w model was also used in [8]
for the modeling of multi-lane traffic.
GCA-w algorithm with absolute links. The following GCA-w rule can
directly be derived from the GCA rule, using only the parts of the rule that
describe the moving. The cell’s state is (Type,R, L, v, z) as in the GCA rule.
Now, the neighbors’ state variables x in L, v, z, at position i + z, denoted
by z.x (meaning access relative to the own position i, z.x = x[i + z]), can
directly be modified. Thus, the agent beams itself to its next position i+ z.
(L : z) means: access the agent in front via the absolute link L and then
read the component z, respectively L : z = z[L[i]].

if Type = A then
if z>0 then // agent moves

Type <- E // delete, L is no longer relevant
z.Type <- A // agent is beamed to i+z
// z.L will point to new position of A in front
z.L <- L + L:z // L points to A in front
z.v <- z // precomputed speed z is written to own position +z
// min(v+1, d, vmax), L points to A in front
z.z <- max(0, min(z + 1, (L-i-z) + L:z - 1, vmax) - R)

elseif z=0 then // agent does not move
// L will point to agent in front, moved by z
L <- L + L:z // L points to agent in front
v <- z // use precomputed speed
// min(z+1, d, vmax), L+L.z-1 = future dist. to agent in front
z <- max(0, min(1, (L-i) + L:z - 1, vmax) - R)

endif
endif

This GCA-w algorithm is much shorter and simpler than the GCA al-
gorithm. In addition, it is more efficient because only the agent cells have
to be active and no redundant computations are performed. Thus the com-
puting complexity is only O(z), where z is the number of agents. The above
algorithm can be simplified (integration of the cases for (z > 0) and (z = 0),
and with z.x = x if z = 0):

if Type = A then
if z>0 then Type <- E, z.Type <- A endif
z.L <- L + L:z
z.v <- z
z.z <- max(0, min(z + 1, (L-i-z) + L:z -1, vmax) - R)

endif

Note that this algorithm uses relative addressing z.L = z[i+L[i]] and abso-
lute addressing L : z = z[L[i]].

GCA-w Algorithms for Traffic Simulation 195

GCA-w algorithm with relative links only. The algorithm above uses
absolute addressing for the link L, denoted by L : z = z[L]. An equivalent
description, using relative addressing for L, L.z = z[i + L], is the following
algorithm. This description is “cell based”, meaning that the point of view
is any cell, and in the description no cell index i is used. Note that L − 1
is the actual gap size between two cars, and L − z + L.z − 1 is the gap in
the following generation, when both cars will have moved. Fig. 5 shows the
movements of two cars using the pre-computed new speed z.

L

z

t

t+1

Fig. 5. GCA-w algorithm with relative links. The agent knows already its new
position given by z when entering into the current generation.

if Type = A then
// move agent
if z>0 then Type <- E, z.Type <- A endif
// "z." means at destination
z.v <- z // new speed = z(t)
z.L <- L-z + L.z // next relative link
// compute future position (new speed) one gen. in advance
z.z <- max(0, min(z + 1, L-z + L.z - 1, vmax) - R)

endif

A simulation sequence of this algorithm for 10 generations with N = 20
cells, 3 cars and vmax = 4 is the following:

0 **.*................
1 **.*................
2 **..*...............
3 *.*..*..............
4 *..*..*.............
5 .*...*..*...........
6 ..*....*...*........
7 ...*......*...*.....
8*........*....*.
9 .*...*...........*..

196 R. Hoffmann

The states of the cells in the generations t = 5, 6, 7 are

-- 5 generation
1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 R random
. * . . . * . . * C cars

1 2 2 V speed
1 2 3 Z future speed
4 3 13 L rel.pointer

5 4 11 L’ new
1 2 3 V’ new
1 3 3 Z’ new

0 1 0 1 0 1 C’ new

-- 6 generation
0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 R random
. . * * . . . * C cars

1 2 3 V speed
1 3 3 Z future speed
5 4 11 L rel.pointer

7 4 9 L’ new
1 3 3 V’ new
1 3 4 Z’ new

0 1 0 1 0 1 C’ new

-- 7 generation
1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 R random
. . . * * . . . * C cars

1 3 3 V speed
1 3 4 Z future speed
7 4 9 L rel.pointer

9 5 6 L’ new
1 3 4 V’ new
1 4 3 Z’ new

0 1 0 1 0 1 C’ new

GCA-w algorithm with a varying number of active agents. At last
an algorithm will be presented that is able to deactivate and activate agents.
Agents that are stuck in a traffic jam are deactivated. The advantage is that
“sleeping” agents need not to perform any computations and thus energy
and computation time can be saved. (Nevertheless sleeping agents have to
be aware to be wakened-up, and thus have to perform a minimal listening
process.) The rule for deactivation is: If there is an agent directly in front
and an agent directly behind, then the blocked agent enters into the passive
state Type = P . Now the cell’s state is (Type, R, L,B, v, v′), where v′ is
a temporary variable. In Phase 1 every cell computes its next speed v′

(the movement offset) and stores it in the temporary variable to be used in

GCA-w Algorithms for Traffic Simulation 197

Phase 2 by the cell itself and by the cell’s neighbors. B is an additional link,
pointing from an agent back to its follower. Fig. 6 shows the movements
and the computation of the new links. Fig. 7 shows the deactivation and
activation procedure.

// PHASE 1
if Type = A then

// compute new speed v’, new position will be i+v’
v’ = max(0, min(v+1, L-1, vmax) - R

endif

// PHASE 2
if Type = A then

L’ = L + L.v’ - v’ // compute next forward link
B’ = B + B.v’ - v’ // compute next backward link

v’.L <- L’ // sync. write to position i+v’
v’.B <- B’
v’.v <- v’

if v’>0 then // if agent will move
Type <- E, v’.Type <- A
// activate follower if passive
if (-1).Type = P then (-1).Type <- A endif

endif
if (L’=1) and (B’=-1) then

Type <- P // deactivate, if agent will be enclosed by agents
endif

endif

v‘

L + L.v’ - v’

L

B

B + B.v’ - v’

(v‘ was computed in Phase 1)
L.v‘

B.v‘

t

t+1

Fig. 6. GCA-w algorithm with a varying number of active agents. Computation of
the new links. L points forwards, B points backwards.

198 R. Hoffmann

deactivate, if agent will be enclosed by agents

if (L’ = 1) and (B’ = -1) then Type � P
P

activate by moving agent in front

if (-1).Type = P then (-1).Type � A endif

P

t

t+1

t+2

t+3

Fig. 7. The agent is deactivated when it stopped and is enclosed by other agents.
It is activated again by the agent in front when it starts to move again.

In order to apply only one phase, a synchronously updated state variable
z(t) = v′(t+ 1) can be used to replace the temporary local variable v′. The
first phase can be saved by attaching the computation of v′ to the end of
PHASE2: (PHASE2, then compute v′ and assign it to z). Thereby v′ is
already available when entering into the next generation (pre-computed and
stored already in z). Thus z has a semantically identical meaning as the
variables “z” used in the preceding algorithms. On the other hand, the
preceding algorithms can be transformed into algorithms with two phases,
computing v′ in the first phase and use it as z in the second phase.

3. Conclusion

The GCA-w model is well suited to describe problems with moving
agents/particles concise and efficiently as it was shown for the traffic simula-
tion. For comparison, the Nagel–Schreckenberg algorithm was first described
as a CA rule, and then as a GCA rule. The corresponding GCA-w rule is
much shorter, easy to understand, and only the cells of type agent need to
be simulated. In addition, a rule was presented, which deactivates cars stuck
in a traffic jam, and which activates the car behind the head of the queue,
when the head starts to move again. Such an algorithm can also be useful
for car-to-car communication systems where a car can be stopped or started
automatically depending on the local situation.

I would like to express my thanks to Patrick Ediger (Technische Univer-
sität Darmstadt, Computer Architecture Group) for his valuable comments
to improve the formal description of the GCA-w model.

GCA-w Algorithms for Traffic Simulation 199

REFERENCES

[1] K. Nagel, M. Schreckenberg, J. Phys. I France 2, 2221 (1992).
[2] R. Hoffmann, Fachgebiet Rechnerarchitektur, Technische Universität

Darmstadt, Internal Report (1/2009),
http://www.ra.informatik.tu-darmstadt.de/forschung/publikationen

[3] R. Hoffmann, Acta Phys. Pol. B Proc. Suppl. 3, 347 (2010).
[4] R. Hoffmann, Lect. Notes Comput. Sci. 5698, 194 (2009).
[5] R.Hoffmann, K.-P. Völkmann, S. Waldschmidt, in: Theoretical and Practical

Issues on Cellular Automata, Proceedings of the Fourth International
Conference on Cellular Automata for Research and Industry, Karlsruhe, 4–6
October 2000, Springer, 2000.

[6] R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, W. Heenes, Lect. Notes
Comput. Sci. 2127, 66 (2001).

[7] Chr. Schäck, R. Hoffmann, W. Heenes, Efficient Traffic Simulation Using the
GCA Model, talk on APDCM Workshop at IEEE International Parallel and
Distributed Processing Symposium IPDPS 2010.

[8] A. Lawniczak, B. Di Stefano, Acta Phys. Pol. B Proc. Suppl. 3, 479 (2010).
[9] S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution

Algorithms, Theory and Applications, World Scientific, 1994.
[10] J. Keller, Chr. Kessler, J. Träff, Practical PRAM Programming, Wiley, 2001.
[11] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[12] D. Keil, D. Goldin, in: Proceeding WETICE ’03 Proceedings of the 12th

International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, IEEE Computer Society Washington, DC, USA,
2003.

http://dx.doi.org/10.1051/jp1:1992277
http://dx.doi.org/10.1007/978-3-642-03275-2_20
http://dx.doi.org/10.1007/3-540-44743-1_6
http://dx.doi.org/10.1007/3-540-44743-1_6

	1 Introduction
	1.1 Informal description of the GCA-w model
	1.2 Formal description of the GCA-w model
	1.3 Related work

	2 Modeling car movements
	2.1 Nagel--Schreckenberg algorithm and CA rule
	2.2 GCA algorithm
	2.3 GCA-w algorithms

	3 Conclusion

