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FLAME allows complex models to be automatically parallelised on High
Performance Computing (HPC) grids enabling large number of agents to
be simulated over short periods of time. Modellers are hindered by com-
plexities of porting models on parallel platforms and time taken to run
large simulations on a single machine, which FLAME overcomes. Three
case studies from different disciplines were modelled using FLAME, and
are presented along with their performance results on a grid.
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1. Introduction

The ideologies surrounding cellular automata models gave birth to the
concepts of agent-based modelling (ABM) methods. Introduced by Reynolds
in 1985, agent-based models have recently become the driving force in var-
ious research areas, especially after the advent of more powerful parallel
computers. These allow simulations of large populations of agents to be
executed in controlled environments, examining the affects of various rules
of interactions among the agents. Agent-based models encourage bottom-
up approaches allowing the research to focus on the individual elements
interacting with each other rather than looking at the complete scenario
as a whole. Initially, the pattern in models was proved using differential
equations with more common examples being found in economic modelling,
where mathematical formulas are still being used to prove the behaviour
of ideas. [1] and [2] have favoured agent-based approaches by saying that
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research should be intensified to focus into agents rather than the whole
systems, realistically allowing humans to be modelled as agents rather than
differential equations.

The model starts with a description about the individual elements in
the system which will be represented as agents. The agents are given a set
of memory variables, functions and communication protocols which allows
them to communicate with each other and the environment. Agents are
implemented as separate pieces of code which communicate with each other
through communication protocols, also known as messages. Their individual
interactions allow certain macro variables to emerge in the system which
depicts how the whole system collectively behaves. The simulated model is
tested against real data to check if it is an accurate depiction of the system
before it can be used further for research purposes.

FLAME (Flexible Large-scale Agent-Based Modelling Environment) is
an agent-based modelling environment which allows modellers from all disci-
plines, to easily write their own agent-based models. It enables various levels
of complexity from modelling molecules to complete communities, by only
varying the agent definitions and functions [3]. Formal X-machines [4] are
used as the agent architecture, which brought in structure, memory, states
and transition functions to the agent. The X-machine agents communicate
through messages using the interaction rules specified by the modeller. These
rules involve posting and reading messages from the message boards. Using
a distributed memory model, Single Program Multiple Data (SPMD), the
framework handles deadlocks through synchronisation points, which ensures
that all the data is coordinated among agents. FLAME stands out from the
other agent-based modelling frameworks as it allows deployment of simula-
tions on large parallel computers. This allowed to run large simulations (as
many as 500,000 agents) in a matter of minutes enhancing research in terms
of time and complexity of models [5]. Over the years various platforms have
been released for ABM building each using different programming languages
and having their own characteristics. [6] and [7] have provided a detailed
comparison between various platforms by implementing similar models on
the different platforms.

2. FLAME in detail

FLAME is based on the ‘logical communicating extended finite state
machine theory’ (X-machine) which gives agents more power to enable writ-
ing of complex models. Agents are modelled as communicating X-machines,
which allow them to communicate through messages as specified in the model
(XML) file. Each agent would thus possess the following characteristics:
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(i) a finite set of internal states of the agent, (ii) a set of transition func-
tions that operate between the states, (iii) an internal memory set of the
agent, and (iv) a language for sending and receiving messages among agents.

Internal states of the agent are different from internal state of the memory
of the agent. Internal state depicts a state after or before a function is
performed whereas a state of the memory represents the values in memory
at that time step.

Modellers need to prepare three files, which are highlighted in Fig. 1 and
described briefly as follows:
Model.xml: Multiple xml files contain the model structure, such as agent
descriptions, memory variables, function names or interfaces, messages.
Functions.c: Multiple ‘.c’ files contain the implementations of the agent
functions specified in the xml files.
0.xml: This contains the initial states of the memory variables of the agents
such as the initialisation of all parameters.

Fig. 1. Block diagram of the FLAME framework.

Xparser, the simulation program generator of FLAME, is compiled with
the modellers’ files to produce a simulation package (Main.exe) for running
the simulations. The number of the resulting XML files depends on the
number of iterations specified to run a model.

Figure 2 shows the structure of how two X-machines communicate. Com-
munication between agents is handled by an intelligent message board li-
brary, which also allows filtering of messages, reducing the work for the
agents, thereby improving simulation performances. Conventional state ma-
chines have been used to describe the state-dependent behaviour of a system
by outlining the inputs to the system, but this failed to include the effect of
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messages being read and the changes in the memory values of the machine.
X-machines are an extension to conventional state machines that include
the manipulation of memory as part of the system behaviour, and thus are
a suitable way to specify agents. Therefore, describing a system in FLAME
includes the following stages: (1) identify the agents and their functions,
(2) identify the states which impose some order of function execution within
the agent, (3) identify the input and output messages of each function (in-
cluding possible filters on inputs), and (4) identify the memory as a set of
variables accessed by functions (including possible conditions on variables
for the functions to occur).

Fig. 2. Communication between two X-machines in FLAME framework.

FLAME also enables models to be parallelised efficiently over parallel
computers. Message Passing Interface (MPI) is used to send messages be-
tween agents which are located on different processors on various platforms.
FLAME reads in the model files and automatically generates a simulation
program in C which can be run in parallel by using the ‘-p’ flag or in serial
by default. Various parallel platforms like SCARF, HAPU and Iceberg have
been used in the development process to test the efficiency of the FLAME
framework. Furthermore, FLAME enables agents to be created dynamically
throughout a simulation, which is an extremely useful feature for modellers.

3. Case study 1 — economic model

The Cournot model (1897) is a simple economic model which involves
firms competing against each other in terms of quantities they produce to
achieve the highest profit. The firms produce one homogeneous product and
based on the demand in the system the price of the product changes. This is
similar to the supply-demand curve in economics literature where the curves
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have an inverse relationship with each other. The point at which the two
curves intersect each other is the equilibrium of the system. At equilibrium
the demand would allow the product to cost the optimum market price.
Equilibrium in a market scenario is defined as ‘a situation in which the
plans of buyers and the plans of sellers exactly mesh, causing the quantity
supplied to equal the quantity demanded at the price in the market-place
for the good (product)’ [8].

The Cournot model is similarly based on sets of equations that can be
used to predict the behaviour of the firms at different times and the equilib-
rium point for the system. The profit earned by the firm can be calculated
from the quantity qi produced by firm i:

Profiti = (Pmarket× qi)− (costi × qi) .

If Firm 1’s production is zero, Firm 2 can dominate the market by pro-
ducing quantity equal to the demand. When Firm 1 starts producing, Firm 2
should reduce its output as total quantity being produced becomes more
than demand. If there is too much of the product, this reduces its sales and
Firm 2 will suffer high loss. Note that all products have to be sold in the
same iteration. If the total quantity produced is more than demand in the
system, product is given away for free or on negative market prices.

3.1. Results and discussion

Table I lists the initial values set at the beginning of the experiment.
Figure 3 (a) and (b) display the graphs for the price and profits for the firms
in this experiment. The graphs show that the firms take longer to find the
equilibrium but eventually oscillate about it. Therefore firms are able to
experiment and find an equilibrium among themselves eventually because
they are all progressively trying to do better.

TABLE I

Initial numerical values set in the Cournot experiment.

Variable Value

QMAX 511 (Assuming all bits in a 9 digit binary string was 1)
n 3 (Number of firms)
Q∗ 127.5 (Quantity at equilibrium)
P∗ 128.5 (Price at equilibrium)
Profit∗ 15108.75 (Profit at equilibrium)
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The steps taken during the Cournot model are as follows:
1: Firm Agent: If beginning of the simulation, generate strategies for the
firm database else do nothing.
2: Firm Agent: Select an elitist strategy from the memory database based
on roulette wheel selection. Post this as the chosen strategy.
3: Firm Agent: Read in all the representative strategies of other firms and
calculate the profit I would attain if others played their representative strate-
gies and I played each of the different strategies in my memory. Calculate
the new fitness of the strategies accordingly.
4: Firm Agent: Choose two elitist strategies from the database using the
new fitness of the strategies. Perform crossover and mutation techniques
and find three child strategies.
5: Firm Agent: Use child strategy in the scenario as played strategy.
6: Demand Price Agent: Read in all played strategies by firms and calculate
the price of the product depending on the demand in the system.
7: Firm Agent: Reads in the price of the product and calculates the actual
profit as a result of playing the child strategy.

Fig. 3. Graph of profits of firms and price in system.
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The Cournot experiment was run on a number of architectures to mea-
sure the characteristics of the experiment using the FLAME framework.
Figure 4 shows how the simulation times changed when the same model
was run on different architectures. The Cournot experiment run with 61
agents, with 3 firms and 1 demand price agent in 20 scenarios and an Av-
erager agent. The figure shows that the model was quicker on the parallel
mainframe Iceberg than desktop machines running Windows and Mac.

The figure also shows that the simulation time increased with the number
of nodes on the architecture. This increase in simulation time is because the
Cournot model is a centralised model and the agents communicated to one
demand price agent. Therefore the overhead when all agents send message
to one agent increases with nodes. The parallel distribution of the agents
was done in a round robin manner distributing the agents uniformly over
the processors used. This increased the communication between the different
processors which caused a delay in the simulation run.

Fig. 4. Simulation times when Cournot model was run on different platforms.

4. Case study 2 — foraging model of Monomorium pharaonis

Ant colonies are complex biological systems that respond to changing
conditions in nature by solving dynamic problems. Their ability of decen-
tralized decision-making and their self-organized trail systems have inspired
computer scientists since 1990s, and consequently initiated a class of heuris-
tic search algorithms [9].
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The major challenge in social insect research is understanding how colony-
level behaviour emerges from individual interactions. Models to date focus
on simple pheromone usage with mathematically devised behaviour, which
deviates largely from the real ant behaviour. Furthermore, simulating large-
scale behaviour at the individual level is a difficult computational challenge;
hence models fail to simulate realistic colony sizes and dimensions for forag-
ing environments.

We work with the Pharaoh’s ants, Monomorium pharaonis, a widely
studied model system for investigating pheromone trails [10, 11]. Pharaoh’s
ant is a 2 mm monomorphic pest ant forming colonies with less than 2500
workers. They do not have nest-mate recognition, which makes the manipu-
lation of the colony size simple. Having poor vision, they are wholly reliant
on pheromones for orientation [10]. Unlike other ant species they deposit
trail pheromones constitutively when outside the nest forming branching
networks of pheromone trails even before food is discovered [11]. While the
majority of ant species (such as Lasius niger) form highly diffusive short-
lived trails, M. pharaonis forms complex persistent networks of narrow trails.

Agent-based modelling approach via FLAME was utilized to prepare a
basic foraging model of the Pharaoh’s ants. Model rules and parameters
were based on related biological research. The aim was to benefit from the
advanced features of FLAME and improve the existing ant foraging models
in the literature, as well as to test the effect of simple rules introduced to
the model.

4.1. Model details

The model consists of ant, pheromone, food and nest agents, as well
as two environment agents used for dynamic creation of the pheromone and
food agents throughout the simulation. Ant agents are characterised by their
identity number, nutritional status, current heading and environmental lo-
cation. Ant agents exit the nest when their nutrition level drops below a
threshold value and begin searching for food. They move non-randomly, ac-
cording to a probabilistic ‘turning kernel’ [12], which was empirically derived
from biological experiments through video tracking. Ant agents deposit (fed
ants deposit 2 units, while unfed ants deposit 1 unit) pheromone agents in
the environment as they walk, either creating new ones dynamically or re-
inforcing existing ones. They have a priority to follow pheromone agents if
they can sense any. As observed in biological experiments, ant agents show
high fidelity to trail following, but there is always a probability that they
will depart from the trail at each step [11]. Agents also engage in U-turning,
where they make a spontaneous 180 degree turn [13].
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For purposes of simulation colonies of 50, 250 and 500 agents were used.
Pharaoh’s ant colonies are approximately equally divided into nest-workers
and foragers [3], therefore a realistic colony size was simulated. Environment
is modelled as continuous space, where each ant step has a length of 2 mm
(one ant body length). Dimension of the environment was 500 by 500 ant
steps, thus simulating a realistic foraging space of 100 cm2 [13]. The nest
agent has dimensions of 20 by 20 mm, initially containing ant agents with
random coordinates inside. Food agents are placed at random coordinates
with random sizes, where the size is decreased by 0.02 units whenever an
ant agent comes across. When the size of a food agent equals to 0.2 units,
the food agent is killed, and a new food agent with random coordinates and
size appears, simulating a dynamic foraging environment.

Pheromone agents are characterised by environmental location, concen-
tration and radius. The concentration decays exponentially based on an
empirically derived decay rate [11]. The radius simulates the diffusion of
the pheromone scent, however due to limited knowledge this is updated
based on the concentration via a linear formula. Initially, there are no exist-
ing pheromone agents within the environment, simulating a virgin territory.
Pheromone agents are dynamically created throughout the simulation by
ant agents.

Ant agents search the environment until they detect a food agent, in
which case their nutritional level is updated to a maximum food level, and
the agent makes a 180 degree turn. Then the ant agent follows pheromone
trails to return to the nest. Once an ant agent is back in the nest, she will
not leave until her nutrition level falls below the threshold. Their nutrition
levels are decreased at every step.

4.2. Results and discussion

Version 1: Basic version based on rules explained in previous section (except
probability to leave trail).
Version 2: Version 1 was improved with the addition of a radius to food
agents based on food size, representing diffusion of food smell.
Version 3: Version 2 was further modified with a probability to leave the
nest (0.001 per step [11]).

Figure 5 shows the results from the three versions of the models. As the
environment is simulated as continuous space, the chances of the ant agents
missing a food source nearby is very high. Therefore, in version 2 introducing
food smell based on food size provided a ground for faster discovery of food
agents, as well as establishing stronger trails. Version 3 performed better
compared to version 1 as the probability to leave the trail provided the
ants with a flexibility in walking off trails which could have been leading
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the wrong way (exploratory trails), however did not perform as good as
version 2, as this also meant that ant agents walked off rewarding trails and
got lost in the environment. Furthermore, increased number of ant agents
increased the overall foraging efficiency as this meant at any time step, more
ants were actively exploring the environment.

Fig. 5. Foraging efficiency (number of Fed ants/Total number of ants) results from
three versions of the model with 50, 250 and 500 ants. Each model was run 10
times for a period of 5000 iterations.

Simulations were performed on a Sony laptop (2.4 GHz processor, 4GB
RAM) and Iceberg, the White Rose Grid (586 cores, 435 GFLOPs operating
with Sun Grid Engine). Simulations on Iceberg were performed using 1, 2, 4,
8, 16 and 32 cores. Results in Fig. 6 demonstrate that the processing times
were reduced by six times when the model was run in parallel compared
to serial on the grid, and twenty times when run in parallel on the grid
compared to serial on the laptop, which is extremely desirable for processing
complex biological models.

FLAME coupled with High Performance Computing enabled large-scale
simulations of complex models to be run in parallel on a grid without com-
promising on the time taken to attain results. In ABM, models can scale
up exponentially depending on the number of agents and the complexity of
the functions to be performed, therefore this is a significant contribution.
Furthermore, the advanced features of the framework, such as dynamic cre-
ation of agents during a simulation, provided realistic grounds for modelling
agents, especially pheromones, which sets this basic foraging model apart
from the related models in the literature.
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Fig. 6. Performance results from simulations of model Version 2 in serial and par-
allel on Iceberg grid and Sony laptop [14].

5. Case study 3 — regulation of electron transport chain
in Escherichia coli

The bacterium Escherichia coli is probably the best characterized bac-
terium as it has been studied for many years. It is relatively easy for biol-
ogists to use and probably the most genetically and metabolically defined
organism known. Most strains are not pathogenic to humans (they exist in
gut flora) but a few cause serious disease e.g. E. coli O157:H7. It is bio-
chemically versatile and unlike many organisms can thrive in environments
either with abundant oxygen (O2) or no O2 [15]. The ability to sense and
respond to changes in O2 availability is necessary for E. coli to successfully
compete in a range of niches, including during infection and when used as
a “cell factory” in biotechnology. Experimental work with E. coli involves
the use of Chemostats, which allow measurements of transient properties



212 M. Kiran et al.

(metabolite levels, fluxes, H+/O ratios, QO2) to be performed in standard-
ized ways that can be replicated in different laboratories. This is the fo-
cus of the Systems Understanding of Microbial Oxygen (SUMO) project, a
multi-national project in the Systems Biology of MicroOrganisms (SysMO)
initiative. Oxygen availability profoundly affects E. coli bioenergetics, and
through the synthesis of alternative electron transport chains E. coli exploits
any available O2 to support aerobic respiration — the most energetically ef-
ficient mode of growth. Thus, E. coli has two well-characterized alternative
terminal oxidases; Cyd has a very high affinity for O2 and is used under
micro-aerobic conditions, whereas Cyo has a relatively lower affinity for O2

and is used under normoxic conditions (Fig. 7). The synthesis of these alter-
native oxidases is regulated by two main transcription factors: the fumarate
and nitrate reduction regulator (FNR) and the two-component aerobic res-
piratory control (ArcBA) system (reviewed in [16]). These regulators can
sense changes in O2 availability — FNR is a direct O2 sensor, whereas Ar-
cBA senses O2 indirectly [17] — to re-program gene expression such that
the most appropriate electron transport chain is synthesized in any partic-
ular niche. Hence, in the absence of O2, expression of Cyo is repressed by
FNR and phosphorylated ArcA (ArcA∼P), whereas expression of Cyd is
also repressed by FNR but activated by ArcA∼P (Fig. 7). Furthermore, the
primary signal for switching ArcBA and FNR off (O2) is consumed by the
terminal oxidases, forming a negative feedback loop (Fig. 7). Thus, the ac-
tivities of FNR and Arc are the primary determinants of the extent to which
each oxidase is synthesized, but measuring these activities experimentally is
technically demanding.

Fig. 7. Schematic model of oxidase regulation.

5.1. Model details

Understanding the synthesis of alternative oxidases in E. coli can only be
efficiently understood using multi-scale and multi-level modelling. We have
integrated three different, complementary modelling approaches: kinetic,
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reduced-order kinetic, and agent/hybrid modelling (Fig. 8). Each approach
contributes by addressing questions that are difficult to incorporate within
a single modelling framework. The flexible agent-based supercomputing
framework FLAME provides the basis for this integration.

Fig. 8. Experiment-modelling cycle.

Each individual molecule is represented as an autonomous agent that
exists within the cellular environment and interacts with other molecules
according to the biochemical situation. The numbers of such molecules in
a typical cell are between 5000 and 10000 for all of the proteins of interest.
Molecules each have a location within the cell. Some, such as the oxidases,
are located at the cell membrane, whereas others, like the regulators, are
more uniformly distributed. Molecules can move through 3D space in the
cell and interact with each other when close enough and in a suitable state.
They move differently in different regions of the cytoplasm, which was mod-
elled via Brownian motion where appropriate. The agent-based model must
of course agree with the corresponding reaction kinetics model in the cir-
cumstance where reaction kinetics can reasonably be applied (i.e. with large
numbers of molecules of well-mixed chemicals). Since information about re-
acting chemicals is invariably given for such a situation, and because little
information exists about individual molecular interactions, it is important
to infer required parameter values from reaction kinetics. Interactions with
O2 molecules were modelled by interpreting the k rate (k is a reaction rate
constant that quantifies the speed of a chemical reaction) in terms of inter-
action radius. The rate constant was then used to deduce information on
local interactions. Dissociation was dealt with by applying a probabilistic
k rate. Dissociation can easily be accounted for by making bound products
separate randomly at a rate specified by the dissociation rate constant (us-
ing a uniform random distribution initially, though this could be modified
as appropriate). Although this is straightforward, it may be an unnecessary
consideration since the rate of dissociation is often negligible. Both k rates
have been collected from literature and experimental biologists.
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(a)

(b)

(c)

(d)

Fig. 9. A comparison between experimental results and the model predictions.
Figure (c) shows the disparity between the model predictions and the original
experimental data [18].
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The capability of multiple agents to bind together was added. This
allows us to deal with several chemical reactions, where each molecule agent
can seek interaction with several types of molecules, within the appropriately
sized interaction radius. Three experimental measurements formed the basis
of the model viz. the abundances of the oxidases Cyd and Cyo, the relative
activity of the FNR protein in E. coli cultures grown under conditions of
different O2 availability. Using these inputs the model was able to closely
match the experimental measurements and predict the activity of ArcA in
the system (Fig. 9).

5.2. Results and discussion

The predicted ArcA activity did not match ArcA activity predicted from
measurement of transcription from an ArcA-regulated promoter. One pos-
sibility was that a third O2-responsive transcription factor might operate
alongside FNR and ArcA to regulate both oxidises. Alternatively, the in-
direct nature of measuring ArcA activity using a reporter fusion could lead
to inaccuracies. Therefore, new experimental data directly measuring ArcA
phosphorylation was obtained and was found to match the model predictions
very closely. Thus the simulations contributed to clarifying and correcting
the current knowledge about the role of this important regulatory circuit.

Some of the key ways in which the FLAME-SUMO model has been used
is in the estimation of important kinetic parameters in these reactions. Rate
constants and concentrations cannot always be measured directly and the
agent-based model provides a vehicle for experimenting with these values
and then comparing the results with the experimental data derived from
the chemostat experiments. The agent-based models have also been used
to estimate the level of resources needed by the colonies in order to reach a
steady state in a way that may not be possible with other types of modelling.

6. Conclusion and future work

The FLAME framework is being used in a variety of disciplines as pre-
sented above. It is a flexible agent based modelling environment which allows
production of automatically parallelisable code to run on large mainframe
computers. The results presented above have demonstrated how this can
be achieved. Future work of the framework target increased efficiency and
simulation capacities, where the proposed solutions are the introduction of
HDF5 libraries for data compression and transfer over various nodes, and
methods to reduce parallelisation bottlenecks by allowing agent migration
over nodes to increase simulation speed. The framework can be obtained
from http://www.flame.ac.uk
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