
Vol. 4 (2011) Acta Physica Polonica B Proceedings Supplement No 2

ON MODELING LARGE-SCALE MULTI-AGENT
SYSTEMS WITH PARALLEL, SEQUENTIAL

AND GENUINELY ASYNCHRONOUS CELLULAR
AUTOMATA∗

Predrag T. Tošić

Department of Computer Science, University of Houston
Houston, Texas, USA

ptosic@uh.edu

(Received April 12, 2011)

We study certain types of Cellular Automata (CA) viewed as an ab-
straction of large-scale Multi-Agent Systems (MAS). We argue that the
classical CA model needs to be modified in several important respects, in
order to become a relevant and sufficiently general model for the large-scale
MAS, and so that thus generalized model can capture many important
MAS properties at the level of agent ensembles and their long-term col-
lective behavior patterns. We specifically focus on the issue of inter-agent
communication in CA, and propose sequential cellular automata (SCA)
as the first step, and genuinely Asynchronous Cellular Automata (ACA)
as the ultimate deterministic CA-based abstract models for large-scale MAS
made of simple reactive agents. We first formulate deterministic and non-
deterministic versions of sequential CA, and then summarize some interest-
ing configuration space properties (i.e., possible behaviors) of a restricted
class of sequential CA. In particular, we compare and contrast those proper-
ties of sequential CA with the corresponding properties of the classical (that
is, parallel and perfectly synchronous) CA with the same restricted class of
update rules. We analytically demonstrate failure of the studied sequential
CA models to simulate all possible behaviors of perfectly synchronous par-
allel CA, even for a very restricted class of non-linear totalistic node update
rules. The lesson learned is that the interleaving semantics of concurrency,
when applied to sequential CA, is not refined enough to adequately cap-
ture the perfect synchrony of parallel CA updates. Last but not least, we
outline what would be an appropriate CA-like abstraction for large-scale
distributed computing insofar as the inter-agent communication model is
concerned, and in that context we propose genuinely asynchronous CA.

DOI:10.5506/APhysPolBSupp.4.217
PACS numbers: 05.70.Jk, 89.20.Ff, 89.75.Fb

∗ Presented at the 2nd Summer Solstice International Conference on Discrete Models
of Complex Systems, Nancy, France, June 16–18, 2010.

(217)



218 P.T. Tošić

1. Introduction and motivation: CA models for large-scale
multi-agent systems

Multi-Agent Systems (MAS) are technical, social, socio-technical, biolog-
ical or other decentralized systems composed of several (two or more) agents
that are capable of mutual interaction. The interaction among agents can
take various forms, from communication via exchanging messages (for ex-
ample, between two software or robotic agents) to producing changes in the
agents’ common environment (for example, stigmergy phenomena among so-
cial insects). The agents in MAS are usually autonomous entities. An agent
is said to be autonomous if it exercises some degree of control over both its
internal state and its (externally observable) behavior — as contrasted to
being entirely controlled from the outside. Examples of such autonomously
acting (artificial) agents include various types of software agents, robots,
smart sensors and unmanned vehicles that are not remotely controlled. Hu-
man decision-makers can also be considered autonomous agents in various
contexts. In particular, various kinds of human organizations, as well as the
society in general, can be considered examples of multi-agent systems.

It is well-known that MAS can manifest self-organization and complex
collective behaviors even when the individual autonomous behaviors of all
individual agents, as well as the interaction patterns among those agents, are
quite simple. Emerging collective dynamics of large-scale MAS (those typi-
cally made of anywhere from hundreds to millions or more of autonomously
executing agents, depending on the context) has been an active area of re-
search in artificial intelligence and artificial life (e.g., [1, 2, 3]).

MAS are usually viewed as being at the intersection of artificial intelli-
gence on one, and distributed computing and communication systems, on
the other hand. Hence, MAS research heavily draws on the existing theories,
tools and methodologies from both AI and distributed computing. What we
would like to contribute to the more thorough understanding and better de-
sign of large-scale MAS are some ideas, paradigms and tools from another
scientific discipline, namely, complex dynamical systems [4, 5, 6, 3]. Among
many mathematical models of complex systems, the one class that we find
particularly useful for addressing many fundamental issues in parallel and
distributed computing in general, and in large-scale multi-agent systems in
particular, are the classical cellular automata and some of their graph or
network automata extensions and variants. We find cellular and network
automata models to be particularly suitable as relatively simple but quite
useful and mathematically elegant abstractions of large-scale MAS when the
main interest is in collective dynamics of large agent ensembles, as opposed
to internal deliberations of individual agents [4, 3].



On Modeling Large-Scale Multi-Agent Systems. . . 219

Cellular Automata (CA) were originally introduced as a mathematical
model of biological systems capable of self-reproduction (see Section 2 and
references therein). CA have been extensively studied in many different
domains, especially in the context of modeling and simulation of complex
physical, biological, social and socio-technical systems and their dynamics.
However, CA have also been viewed as an abstraction of massively parallel
computers. While most of the previous research in computer science on CA
and similar models have used those models as abstractions for parallel hard-
ware architectures, we use these dynamical system models as an abstraction
for open distributed environments at the software level [7,4]. More precisely,
we view CA-based models as an abstraction for autonomously executing lo-
cal processes that are reactive, persistent, and coupled to and interacting
with one another and possibly also with other aspects of their environment.
Even when these individual processes are rather simple, their mutual inter-
action and synergy may potentially yield a highly complex and difficult to
predict long-term global behavior. This property that the behavior of the
“whole” (the entire system) cannot be easily deduced from the simple and
well-understood behaviors of the “pieces” (individual components), is a hall-
mark property of both non-linear complex dynamical systems in physics and
open distributed systems in computer science [4].

What are, then, the important properties of large-scale distributed com-
putational and communication systems in general, and MAS in particular,
that can be adequately captured by the classical CA and CA-like models?
Let us consider a cellular automaton from a MAS perspective. Studying
global dynamics of a CA then translates into an exploration of the global
behavior of a multi-agent system when (i) the individual agent behaviors
are fixed, (ii) the pattern of multi-agent interaction (“network topology”) is
fixed, and (iii) both the individual agent behaviors and the interaction pat-
terns among the agents are highly regular and uniform (i.e., homogeneous)
across the entire system. In particular, CA and other related models capture
the fundamental MAS properties of locality of interaction among the agents,
and the bounded speeds of information and impact propagation [4, 5].

Several modifications of the basic CA model along different dimensions
can be readily argued to provide appropriate abstractions for the large-scale
multi-agent systems. We have identified the following four as the most im-
portant [5]:

• heterogeneity of the network or graph automata models in terms of
(i) the individual agent behaviors and (ii) the inter-agent interaction
pattern, in contrast to the strict homogeneity of the classical CA in
both these respects;



220 P.T. Tošić

• model of inter-agent communication insofar as whether the agents lo-
cally update their states synchronously or asynchronously, and whether
they interact (communicate) with one another synchronously or asyn-
chronously;
• adaptability of the individual agents, i.e., are these agents capable of
dynamically changing their behavior via, e.g., reinforcement learning,
or are their individual behaviors fixed once the conditions of the envi-
ronment and the current state of the agent are specified;
• dynamic changes of the MAS network topology, that would be cap-

tured by allowing the underlying cellular space of a CA to change as
a function of time.

In this paper, we focus on the second dimension in the above list. More
specifically, some implications of the perfect synchrony of the parallel CA
node updates will be identified, and CA behaviors studied once this physi-
cally unrealistic assumption is dropped.

Namely, classical CA are characterized by the perfect synchrony of the
parallel node updates. This perfect synchrony implies, in effect, logical si-
multaneity, and is hard to justify on either physics or computer science
grounds [4, 8]. By allowing the nodes to update one at a time, one arrives
at a sequential version of CA, called Sequential Cellular Automata (SCA).
However, these sequential cellular (and more general graph) automata mod-
els, while more realistic in most domains than their synchronous parallel
counterparts, still fall short of being an appropriate abstract model for large-
scale distributed computation, due to the underlying assumptions of a global
clock, and therefore communication synchrony [8,9]. That is, the local com-
putations of agents are indeed asynchronous, but the inter-agent interaction
is still implicitly assumed synchronized. Therefore, the natural next step
is to study properties of what we call genuinely asynchronous cellular or
graph automata, where no synchrony is assumed when it comes to either
local computation or agent-to-agent communication.

2. Cellular automata basics

Cellular Automata (CA) were originally introduced as an abstract math-
ematical model that can capture the behavior of biological systems capable of
self-reproduction [10]. Subsequently, CA have been extensively studied in a
great variety of domains; they hold a particularly prominent place in model-
ing and simulation of complex physical, biological or social systems and their
emerging behavior and collective dynamics (e.g., [11, 12,13,14,15,16,17]).

However, CA can also be considered an abstraction of massively parallel
computers [18,7]. In our work on various communication models for CA, we
pose, and partly answer, some fundamental questions regarding the nature



On Modeling Large-Scale Multi-Agent Systems. . . 221

of CA parallelism, i.e., the concurrency of the classical CA computation. To
keep the underlying mathematics manageable, the analysis is done in the
context of fairly simple but non-trivial totalistic update rules, namely, the
simple threshold CA. We recall that CA are often viewed as a computational
model of fine-grain parallelism [18,7], in that the elementary operations ex-
ecuted at each node are rather simple and hence comparable to the basic
operations performed by the computer hardware. However, due to the inter-
action and synergy among a typically great number of these nodes, many CA
are capable of highly complex behaviors (or, equivalently, computations). In
a parallel CA, all the nodes execute their operations logically simultaneously:
the state of node xi at time step t+ 1 is a function of the states of node xi

itself, and a set of its pre-specified neighbors at time t.
We consider in the sequel a sequential version of CA, abbreviated SCA,

and compare it with the classical, parallel CA. In particular, we show that
there are 1-D CA with very simple node state update rules that cannot be
simulated by any comparable SCA, irrespective of the node update ordering.
It will then follow that the granularity of the basic CA operations, insofar
as the ability to simulate their concurrent computation via appropriate non-
deterministic sequential interleavings [19,20] of these basic operations, turns
out not to be fine enough [8, 9].

We will also share some thoughts on how to extend our results, and, in
particular, we try to motivate the study of genuinely asynchronous cellular
automata, where asynchrony applies not only to the local computations at
individual nodes, but also to communication among different nodes (via
“shared variables” stored as the respective nodes’ states) [4, 9].

An example of asynchrony in the local node updates (i.e., asynchronous
computation at different “processors”) is the case when, for instance, the
individual nodes update one at a time, according to some random order.
This is a kind of asynchrony that is commonplace in the existing literature;
see, e.g., [2,21,22]. It is important to understand, however, that even in case
of what is referred to as Asynchronous Cellular Automata (ACA) in much
of the existing literature, the term asynchrony there applies to local updates
(i.e., computations) only, but not necessarily to communication between the
nodes, since a tacit assumption of the globally accessible global clock still
holds. (However, for a rare exception to this general rule, see the second
asynchronous model discussed in [22].) We prefer to refer to this kind of
(weakly asynchronous) (A)CA as Sequential Cellular Automata, and, in this
work, consistently keep the term ACA for those CA that do not have a global
clock (see Section 5).

We remark that we use the terms parallel and concurrent as synonyms
throughout the paper. This need not be the most standard convention
among the researchers of programming languages and semantic models of



222 P.T. Tošić

concurrency (e.g., [23, 24, 25]); however, we are certainly not alone in not
making the distinction between the two notions (see, e.g., discussion in [24]).
Moreover, by a parallel (equivalently, concurrent) computation, we mean ac-
tions of several processing units that are carried out logically (if not neces-
sarily physically) simultaneously.

Definition 2.1 A Cellular Space, Γ , is an ordered pair (G,Q), where
— G is a regular undirected Cayley graph that may be finite or infinite,

with each node labeled with a distinct integer; and
— Q is a finite set of states that has at least two elements, one of which

being the special quiescent state, denoted by 0.

We denote the set of integer labels of the nodes in Γ by L. That is, L
may be equal to, or be a proper subset of, the set of all integers.

Definition 2.2 A Cellular Automaton A is an ordered triple (Γ,N,M),
where
— Γ is a cellular space;
— N is a fundamental neighborhood; and
— M is a finite state machine whose input alphabet is Q|N |, and the

local transition function (update rule) for each node is of the form δ:
Q|N |+1→Q for CA with memory, and δ: Q|N |→Q for memoryless CA.

The fundamental neighborhood N specifies what nearby nodes provide
inputs to the update rule of a given node. In classical CA, Γ is a regular
graph that locally “looks the same everywhere”: local neighborhood N is the
same for each node in Γ . The local transition rule δ specifies how each node
updates its state (that is, value), based on its current state (value), and the
current states of its neighbors in N . By composing together the application
of the local transition rule to each of the CAs nodes, we obtain the global
map on the set of global configurations of a CA.

Definition 2.3 A Sequential Cellular Automaton (SCA) S is an ordered
quadruple (Γ,N,M, s), where Γ , N and M are as in Definition 2.2, and s
is an arbitrary sequence, finite or infinite, all of whose elements are drawn
from the set L of integers used in labeling the vertices of Γ . The sequence
s is specifying the sequential ordering according to which an SCA’s nodes
update their states, one at a time.

However, when comparing and contrasting the concurrent CA with their
sequential counterparts, rather than making a comparison between a given
CA with a particular SCA (that is, a corresponding SCA with some par-
ticular choice of the update sequence s), we compare the parallel CA com-
putations with the computations of the corresponding SCA for all possible
sequences of node updates.



On Modeling Large-Scale Multi-Agent Systems. . . 223

Definition 2.4 A Nondeterministic Interleavings Cellular Automaton
(NICA) I is defined to be the union of all sequential automata S whose first
three components, Γ,N and M are fixed. That is, I = ∪s(Γ,N,M, s), where
the meanings of Γ,N,M , and s are as before, and the union is taken over
all infinite sequences s : {1, 2, 3, . . . } → L, where L is the set of (integer)
labels of the nodes in Γ .

We next introduce some concepts and terminology from physics that
is useful for characterizing all possible computations of various parallel and
sequential CA. In particular, we adopt a (discrete) dynamical system view
of CA. A phase space of a dynamical system is a directed graph where
the vertices are the global configurations (or global states) of the system,
and directed edges correspond to direct transitions from one global state to
another. One can now define the fundamental, qualitatively distinct types
of global configurations that a CA can find itself in. These different types of
global configurations relate to key properties of asymptotic dynamics of CA
(or other formal models when viewed as discrete dynamical systems). We
are therefore interested in studying configuration space properties of parallel,
sequential and asynchronous CA as they capture qualitatively distinct types
of possible emerging dynamics in systems abstracted as those various types
of CA [4,3].

We first define the fundamental types of dynamical system configura-
tions for the parallel CA, and then discuss how these definitions need to be
modified for SCA and NICA. The classification below is based on answering
the following question: starting from a given global CA configuration, can
the automaton return to that same configuration after a finite number of
parallel computational steps?

Definition 2.5 A fixed point (FP) is a configuration in the phase space
of a CA such that, once the CA reaches this configuration, it stays there
forever. A cycle configuration (CC) is a state that, once reached, will be
revisited infinitely often with a fixed, finite temporal period of 2 or greater.
A transient configuration (TC) is a state that, once reached, is never going
to be revisited again.

In particular, a FP is a special, degenerate case of a recurrent state with
period 1. Due to deterministic evolution, any configuration of a classical,
parallel CA is either a FP, a “proper” CC, or a TC. Throughout, we shall
make a clear distinction between FPs and proper CCs.

On the other hand, if one considers SCA so that arbitrary node up-
date orderings are permitted, then, given the underlying cellular space and
the local update rule, the resulting phase space configurations, due to non-
determinism that results from different choices of possible sequences of node



224 P.T. Tošić

updates are more complicated. In a particular SCA, a cycle configuration
is any configuration revisited infinitely often — but the period between dif-
ferent consecutive visits, assuming an arbitrary sequence s of node updates,
need not be fixed. We call a global configuration that is revisited only finitely
many times (under a given ordering s) quasi-cyclic. Similarly, a quasi-fixed
point is an SCA configuration such that, once the SCA’s evolution reaches
this configuration, it stays there “for a while”, and then leaves. For example,
a configuration of an SCA can simultaneously be both an FP and a quasi-
CC, or both a quasi-FP and a CC [8]. We call a configuration C of a NICA a
(weak) fixed point if there exists an infinite sequence of node updates s such
that C is a FP in the usual sense when the NICA’s nodes update according
to the ordering s. A strong fixed point of a NICA is a configuration that
is fixed (stable) with respect to all possible sequences of node updates. A
NICA configuration C ′ is a cycle state, if there exists an infinite sequence of
node updates s′ such that, if a NICA nodes update according to s′, then C ′
is a cycle state of period 2 or greater in the usual sense (see Definition 2.5).
In particular, a single configuration of a given NICA can simultaneously be
a weak FP, a CC and a TC; see [8] for an example.

3. Related work

In this section, we first briefly summarize the prior art on abstracting
collective dynamics and emerging behavior of autonomous agents and multi-
agent systems as appropriate models of coupled automata or communicating
finite state machines (CFSMs) (see, e.g., [26,4]); we then relate those mod-
eling efforts to our main research objectives in this paper. We, however,
do not pursue a broader survey of the literature on various computational
and/or dynamical aspects of CA; some of the seminal work on various com-
putational and dynamical properties of CA and related models can be found
in the papers briefly surveyed in the previous section, and references found
in those papers.

It has been argued that there is no such a thing as disembodied mind
or disembodied intelligence. In particular, all intelligent agents, whether
biological or artificial, are embedded in an appropriate environment, be
it physical or virtual, and act upon that environment [27, 28]. Any non-
trivial autonomous agent in a multi-agent system always has an aspect of
the environment external to it, yet relevant to its behavior: that aspect are
the other agents in the system. There may be also other aspects of the
external environment relevant to an agent’s objectives and, in general, po-
tentially impacting the agent’s behavior. Some examples of other relevant
aspects of the environment may include tasks, external resources, physical
or other types of obstacles interfering with the agent’s pursuit of its objec-



On Modeling Large-Scale Multi-Agent Systems. . . 225

tives, and so on. Hence, over the past 10–15 years, many directions of AI
and MAS research have begun treating and, in particular, explicitly mod-
eling the agents’ environments as the first-class entities; some prominent
examples include [1, 29,30,31].

That the coupling between an embedded, or situated, agent and its envi-
ronment can be abstracted via the coupled automata formal model was first
raised (as far as we know) in the seminal work by Kaelbling on situated
agents [26]. In that paper, a single autonomous agent embedded in a dy-
namic environment is studied. Coupled or communicating finite automata
models can, however, clearly be extended to capture multiple agents interact-
ing with each other and with their environment. This modeling framework is
generally applicable when an agent’s environment is made entirely of other
agents, as well as when both other agents and non-agent entities constitute
the relevant aspects of an agent’s environment [4]. Classical CA (with any
of the communication models discussed in this paper), in which each agent
is abstracted as the same kind of a finite state machine, are an appropri-
ate abstraction of a MAS made of identical reactive agents, and where all
relevant aspects of an agent’s environment are adequately captured by ap-
propriately defining the local interactions of that agent with its neighboring
agents. More general graph and network automata, where different nodes
correspond, in general, to different finite state machines, can be viewed as
appropriate abstractions of heterogeneous MAS where not all agents neces-
sarily behave the same way [4,3]. Alternatively, in such more general network
automata based MAS models, one kind of update rules may be capturing
individual behaviors of agents, and another kind of rules, the behavior of
the outside environment. Indeed, motivated by some classical problems in
robotics, the original coupled automata model of situated agency in [26] in-
tends to capture the interaction and mutual impact between an autonomous
agent and its (non-agent) external environment.

Communication models in cellular and network automata and, in partic-
ular, the issue of (a)synchrony of the node updates, have been studied in the
CA and complex systems literature since at least the 1980s. It was originally
observed in [22] that certain properties of the parallel CA dynamics are es-
sentially peculiarities of, generally speaking, a rather unrealistic assumption
of the perfect synchrony of parallel node updates. The authors of [22] pro-
pose two “asynchronous” models; the second one, based on different nodes
updating according to different local clocks, is the closest to our proposed
model discussed in Section 5 below. The impact of different communica-
tion models on the emerging dynamics of CA and other, similar models of
local interactions has been explicitly studied in several other papers, such
as [32,2,21]. We remark that our own early work on parallel and sequential
CA was prompted by the observation that the temporal cycles in parallel



226 P.T. Tošić

CA with the Majority update rule are indeed an idiosyncrasy of the perfect
synchrony assumption, that cannot be reproduced by any conceivable se-
quential ordering of node updates (see [4, 8] and the summary of pertinent
analytical results in the next section of the present paper).

4. On temporal cycles in parallel and sequential
simple threshold CA

We now compare and contrast classical, concurrent and perfectly syn-
chronous CA with their sequential counterparts, SCA and NICA, in the
context of the simplest non-linear local update rules possible, namely, sim-
ple threshold functions.

We first formally define (simple) linear threshold functions and the cor-
responding types of (S)CA.

Definition 4.1 A Boolean-valued linear threshold function of m inputs,
x1, . . . , xm, is any function of the form

f(x1, ..., xm) =
{

1 , if
∑

iwi × xi ≥ θ
0 , otherwise , (4.1)

where θ is an appropriate threshold constant, and w1, . . . , wm are arbitrary
(but fixed) non-negative real numbers1 called weights.

A threshold automaton (threshold (S)CA) is a cellular automaton where
δ is a Boolean-valued linear threshold function.

Therefore, given an integer k, a k-threshold function, in general, is any
function of the form as in Def. 4.1 with θ = k and an appropriate choice
of weights wi, i = 1, . . . ,m. We consider in this paper monotonically non-
decreasing Boolean threshold functions only; this restriction, in particular,
implies that all weights wi are non-negative. We also additionally assume
δ to be a symmetric function of all of its inputs, thereby making the CA,
SCA and NICA models with such update rules totalistic [14, 15]. That is,
the (S)CA and NICA we analyze have symmetric, monotone Boolean func-
tions for their local update rules. We call such functions simple threshold
functions, and we refer to the (S)CA and NICA with simple threshold node
update rules as to simple threshold (S)CA/NICA.

1 In general, wi can be both positive and negative. This is esp. common in the neural
networks literature, where negative weights wi indicate an inhibitory effect of, e.g.,
one neuron on the firings of another, near-by neuron. In most studies of discrete
dynamical systems, however, the weights wi are required to be non-negative — that
is, only excitatory effects of a node on its neighbors are allowed; see, e.g., [33,34,14,15].



On Modeling Large-Scale Multi-Agent Systems. . . 227

Definition 4.2 A simple threshold (S)CA or NICA is a cellular automa-
ton whose local update rule δ is a monotone symmetric Boolean threshold
function.

Throughout, whenever we say threshold cellular automaton we shall mean
a simple threshold cellular automaton, unless explicitly stated otherwise.
That is, the 1-D threshold (S)CA studied in the sequel have the node update
functions of the general form

δ(xi−r, . . . , xi, . . . , xi+r) =

 1 , if
r∑

j=−r
xi+j ≥ k

0 , otherwise
, (4.2)

where k is a fixed integer from the range 0, 1, . . . , 2r + 1, 2r + 2. For exam-
ple, if the CA rule radius is r = 2, and if k = 2, then the k-threshold (S)CA
on a specified number of nodes is just the (S)CA with the node update rule
δ = at least 2 out of 5: the update rule evaluates to 1 if and only if at least
two out of five of its inputs are currently equal to 1. Arguably the most
interesting simple threshold update rule is the Majority function, which we
will abbreviate as MAJ. In a CA with δ = MAJ, a node updates to 1 if and
only if the simple majority of its current inputs are 1.

The results below hold for two-way infinite 1-D (S)CA, as well as for
finite (S)CA with the circular boundary conditions — that is, for the (S)CA
whose cellular spaces are finite rings.

Theorem 4.1 [6] For any Simple Threshold Boolean 1-D Sequential CA
A with rule radius r = 1, and any sequence s of the node updates, the
phase space PS(A) of the cellular automaton A is temporal cycle-free. In
contrast, parallel simple threshold CA with δ = MAJ and r = 1 do have
temporal two-cycles in their configuration spaces.

More generally, for any underlying cellular space Γ that is a (finite or
infinite) bipartite graph, the corresponding (non-trivial) CA with δ = MAJ
have temporal two-cycles. We remark that bipartiteness of Γ is sufficient,
but not necessary, for the existence of two-cycles in this setting [9].

It turns out that the two-cycles in the PS of concurrent CA with δ =
MAJ are actually the only type of (proper) temporal cycles such cellular
automata can have. Indeed, for any simple threshold update rule δ, and any
finite regular Cayley graph as the underlying cellular space, the following
general result holds [11,6, 9]:

Proposition 4.1 Let a classical, parallel simple threshold CA A=(Γ,N,M)
be given, where Γ is any finite cellular space, and let this cellular automa-
ton’s global map be denoted by F . Then for all configurations C ∈ PS(A),
there exists a finite time step t ≥ 0 such that F t+2(C) = F t(C).



228 P.T. Tošić

In particular, this result implies that for any finite simple threshold CA,
and for any starting configuration C0, there are only two possible kinds of
orbits: the computation either converges to a fixed point configuration after
finitely many steps, or else it eventually arrives at a two-cycle.

It is almost immediate that, if we allow the underlying cellular space
Γ to be infinite, if the computation from a given starting configuration
converges after any finite number of steps at all, it will have to converge
either to a fixed point or a two-cycle (but never to a cycle of, say, period
three — or, for that matter, of any other finite period). This property also
extends to finite and infinite SCA, provided that we reasonably define what
is meant by a single computational step in a situation where the nodes update
one at a time. The simplest such notion is that of a single node updating
its state. (One undesirable consequence is, that a single parallel step of a
classical CA defined on an infinite underlying cellular space Γ includes an
infinite amount of sequential computation and, in particular, infinitely many
elementary sequential steps.)

Additionally, in order to ensure some sort of convergence of an arbitrary
SCA (especially when the underlying Γ is infinite), and, more generally,
to ensure that all the nodes get a chance to update their states, an appro-
priate condition that guarantees fairness needs to be specified. That is,
an appropriate restriction on the allowable sequences s of node updates is
required. As a first step toward that end, we shall allow only infinite se-
quences s of node updates through the rest of the paper. For SCA defined
on finite cellular spaces, one sufficient fairness condition is to impose a fixed
upper bound on the number of sequential steps before any given node gets
its “turn” to update again. This is the simplest generalization of the fixed
permutation assumption made in the work on sequential and synchronous
dynamical systems; see, e.g., [33, 34,35,36,37,5, 38].

In the infinite SCA case, on the other hand, the issue of fairness is non-
trivial, and some form of dove-tailing of sequential individual node updates
may need to be imposed. We shall require from the sequences s of node
updates of the SCA and NICA threshold automata to be fair in a simple
sense defined below [8]:

Definition 4.3 An infinite sequence s : N → L is fair if (i) the domain L
is finite or countably infinite, and (ii) every element x ∈ L appears infinitely
often in the sequence of values s(1) = s1, s(2) = s2, s(3) = s3, . . .

We have now set the stage for the following generalization of Proposition
4.1 to both finite and infinite 1-D CA and SCA:



On Modeling Large-Scale Multi-Agent Systems. . . 229

Proposition 4.2 Let a parallel or sequential (S)CA be defined over a finite
or infinite 1-D cellular space (that is, a line or a ring), with a finite rule ra-
dius r ≥ 1. Let this (S)CA’s local update rule be a simple threshold function.
Let us also assume, in the sequential cases, that the fairness condition from
Definition 4.3 holds.

Then for any starting configuration C0 ∈ PS(A) whatsoever, and any
finite subconfiguration C ⊆ C0, there exists a time step t ≥ 0 such that

F t+2(C) = F t(C) , (4.3)

where, in the case of fair SCA, the Eq. (4.3) can be replaced with

F t+1(C) = F t(C) . (4.4)

For the special case of δ = MAJ (S)CA, a computation starting from
any finitely supported initial configuration2 necessarily (and relatively quickly
[8, 9]) converges to either a FP or a two-cycle [11]:

Proposition 4.3 Let the assumptions from Proposition 4.2 hold, and let
the underlying threshold rule be δ = MAJ. Then for all configurations C ∈
PS(A) whatsoever in the finite cases, and for all configurations C ∈ PS(A)
such that C has a finite support when Γ (A) is infinite, there exists a finite
time step t ≥ 0 such that F t+2(C) = F t(C). Moreover, in the sequen-
tial cases with fair update sequences, there exists a finite t ≥ 0 such that
F t+1(C) = F t(C).

Furthermore, if arbitrary infinite initial configurations are allowed in
Propositions 4.2–4.3, and the dynamic evolution of such global configura-
tions is monitored, then the only additional possibility is that the particular
(S)CA computation fails to finitely converge altogether.

To summarize, if the computation of a SCA starting from some config-
uration C converges at all (that is, to any type of finite temporal cycle), it
actually has to converge to a fixed point.

Full proofs of the above two propositions can be found in [39]; more
detailed discussion of the claims in the propositions, and related properties of
parallel and sequential Threshold CA over finite and infinite cellular spaces,
can be found in our prior work [8, 6, 9].

For completeness, we state one more result that provides a stark contrast
of possible dynamics between parallel and sequential Simple Threshold CA.
This result was used in [39] to establish Proposition 4.3 above.

2 Also sometimes called compact support; see, e.g., [11]. A global configuration of a
cellular automaton defined over an infinite cellular space Γ is said to be compactly
supported if all except for at most finitely many of the nodes are quiescent (i.e., in
state 0) in that configuration.



230 P.T. Tošić

Theorem 4.2 [9, 39] The following dichotomy holds:
(i) All 1-D (parallel) CA with any odd r ≥ 1, the local rule δ = MAJ, and

cellular space Γ that is either a finite ring with an even number of nodes or
a two-way infinite line, have finite cycles in their phase spaces. The same
holds for arbitrary (even or odd) r ≥ 1 provided that Γ is either a finite ring
with a number of nodes divisible by 2r, or a two-way infinite line3.

(ii) Any 1-D SCA with any simple threshold Boolean update rule δ, any
finite r ≥ 1, defined over any (finite or infinite) 1-D cellular space, and for
an arbitrary sequence s (finite or infinite, fair or unfair) as the node update
ordering, has a cycle-free phase space.

To summarize, simple threshold CA, depending on the starting configu-
ration, may converge to a fixed point or a temporal two-cycle; in particular,
they may end up “looping” in finite but non-trivial temporal cycles. In con-
trast, the corresponding classes of SCA (and therefore NICA) can never
cycle. Moreover, given an arbitrary sequence of node updates of a finite
threshold SCA, if this sequence satisfies an appropriate fairness condition,
then the evolution of such a threshold SCA A is guaranteed to converge to
a fixed-point (sub)configuration on any finite subset of the nodes in Γ (A).

The temporal cycle-freeness of the threshold SCA and NICA holds irre-
spective of the choice of sequential update ordering; furthermore, extending
to infinite SCA, temporal cycles cannot be obtained even “in the limit”, that
is, via infinitely long computations obtained by allowing arbitrary infinite
sequences of individual node updates. Hence, we conclude that no choice
of a “sequential interleaving” can capture the perfectly synchronous parallel
computation of parallel simple threshold CA. Consequently, the interleaving
semantics [19, 20, 23, 40] of NICA fails to capture the synchronous parallel
behavior of classical CA even for this, simplest non-linear class of totalis-
tic [8, 14,15] CA update rules.

5. Future directions for modeling MAS by cellular automata:
Genuinely Asynchronous CA

Among other things, the results in Section 4 show that, even for the
very simplest non-linear and non-affine totalistic cellular automata, non-
deterministic interleavings dramatically fail to capture the perfectly syn-
chronous parallelism of classical CA. In the actual engineering, physical or
biological systems, however, such perfect synchrony is usually hard to justify.

3 We note that there are also certain CA defined over finite rings and with even r ≥ 2
such that the number of nodes in these rings is not divisible by 2r yet temporal two-
cycles exist. However, a more detailed discussion on what properties the number of
nodes in such CA has to satisfy would be required; we leave further discussion out for
clarity reasons, since those details are not of major importance for our core objectives
in this paper.



On Modeling Large-Scale Multi-Agent Systems. . . 231

In particular, when CA are applied to modeling various complex physical
or biological phenomena (be those the crystal growth, the forest fire prop-
agation, the information or gossip diffusion in a population, or the signal
propagation in an organism’s neural system), one wants to chiefly focus on
the underlying CA behaviors that are, in some sense, dynamically robust.
From this standpoint, temporal cycles in the parallel threshold CA are, in-
deed, an idiosyncrasy of the perfect synchrony, an oddity that is anything
but robust. Likewise, it makes sense to focus one’s qualitative study of the
dynamical systems modeled by the threshold CA to those properties that
are statistically robust [41]. It can be readily argued in a rigorous, probabilis-
tic sense that, again, the typical, statistically robust behavior of a simple
threshold CA computation is a relatively short transient chain, followed by
the convergence to a stable fixed point. In particular, the non-fixed-point
temporal cycles of the threshold CA not only utterly lack any non-trivial
basins of attraction (in terms of the incoming transient ‘tails’), but are
themselves statistically negligible for all sufficiently large finite, as well as
for all infinite, cellular automata [6, 9].

Our recent work on the CA-like complex system models of large-scale
MAS has considered other communication models, that is, other assump-
tions on (a)synchrony of the CA inter-agent communication. We remark
that the two particular classes of graph automata defined over arbitrary
(not necessarily regular, or Cayley) finite graphs, namely, the sequential
and synchronous dynamical systems (SDSs and SyDSs, respectively), and
their various phase space properties, have been extensively studied; see,
e.g., [33,34,35,36,38] and references therein. It would be interesting, there-
fore, to consider asynchronous cellular and graph automata, where the nodes
are not assumed any longer to update in unison and, moreover, where no
global clock is assumed [8,9]. We again emphasize that such automata would
entail what can be viewed as communication asynchrony, thus going beyond
the sequentiality (random or otherwise) of the node updates that has been
relatively extensively studied since the 1980s.

What are, then, such genuinely asynchronous CA like? How do we spec-
ify the local update rules, that is, computations at different nodes, given the
possible “communication delays” in what was originally a multiprocessor-
like, rather than distributed system-like, parallel model? In the parallel case
where a perfect communication synchrony is assumed, any given node xi of
a 1-D CA of radius r ≥ 1 updates according to

xt+1
i = f

(
xt

i, x
t
i1 , . . . , x

t
i2r

)
, (5.1)

for an appropriate local update rule δ = f(xi, xi1 , . . . , xi2r), whereas, in the
asynchronous case, the individual nodes update according to

xt+1
i = f

(
xt

i, x
t1
i1
, . . . , xt2r

i2r

)
. (5.2)



232 P.T. Tošić

We observe that t in Eq. (5.1) pertains to the global time, which of course
in this case also coincides with the node xis (and everyone else’s) local time.
However, in case of Eq. (5.2), each tj pertains to an appropriate local time,
in the sense that each xtj

ij
denotes the node xij s value that was most recently

received by the node xi.
That is, xtj

ij
is a local view of the node xij s state, as seen by the node xi.

Thus, the non-existence of the global clock has considerable implications.
How to meaningfully relate these different local times, so that one can still
mathematically analyze such ACA — yet without making the ACA descrip-
tion too complicated4? Yet, if we want to study genuinely asynchronous CA
models (rather than arbitrary sequential models with global clocks), these
changes in the definition seem unavoidable.

This genuine (that is, communication) asynchrony in CA (see Eq. (5.2))
can be readily interpreted in non-deterministic terms: at each time step,
a particular node updates by using its own current value, and also non-
deterministically choosing the current or one of the past values of its neigh-
bors. Such a “past value” of a node xij used by the node xi would be only
required not to be any older than that value of xij that xi had used as its
input on its most recent local computation, i.e., on the node xis most re-
cent previous turn to update. Hence, insofar as what are the current inputs
to any given node’s update function δ, there is a natural non-deterministic
interpretation of the fact that different nodes have different clocks.

A systematic further qualitative and quantitative comparative study of
Asynchronous CA vs. the sequential and parallel CA models, in our opinion,
could provide valuable insights into those emerging behaviors of large-scale
MAS that are primarily or even solely due to communication delays.

6. Summary

We propose modeling “Multi-Agent Systems” (MAS) made of embedded
reactive autonomous agents and, in particular, qualitative properties of the
asymptotic global dynamics of such MAS, by the cellular automata based
models. In order to make these CA-based models a suitable abstraction
for large-scale MAS, several basic properties of classical CA need to be re-
considered. In this paper, we focus on the CA communication models.

We study possible computations of a simple class of totalistic cellular
automata when the unrealistic assumptions of perfect synchrony and in-
stantaneous unbounded parallelism are dropped. Motivated by the notion
of sequential interleaving semantics of concurrency, we apply this metaphor

4 That is, while staying away from introducing explicit message sends and receives,
(un)bounded buffers, and the like.



On Modeling Large-Scale Multi-Agent Systems. . . 233

to parallel CA and propose a simple formal model of sequential cellular
automata, SCA, and sequential interleavings cellular automata, NICA. In
that context, we summarize our comparative study between SCA and NICA
models on one hand, and parallel CA models on the other, when the node
update rules are restricted to simple threshold functions [8, 6, 9]. It turns
out that even in such very restricted scenarios, this sequential “interleaving
semantics” of NICA fails to adequately capture the perfectly synchronous
parallelism of classical parallel CA.

Motivated by these results on sequential and parallel threshold CA and
some of their implications, we next consider what would be an appropri-
ate communication model for the CA applicable to large-scale distributed
computing. In particular, we propose a class of genuinely asynchronous cel-
lular automata (ACA), and indicate potential benefits of a rigorous study
of ACA properties. These benefits include (i) identifying some of the collec-
tive dynamics properties of large-scale MAS that are mainly or entirely due
to communication asynchrony, (ii) appropriate automata-based sequential
semantics models for parallel and distributed computation, and (iii) lower
bounds on the computational (in)tractability of answering general questions
about the long-term behavior of large-scale MAS; examples of such ques-
tions include those related to the stable global configuration existence, the
expected or worst-case rates of convergence to such stable configurations,
determining whether a given global MAS configuration is recurrent or tran-
sient, and so on.

The broader agenda behind further study of different communication
models for cellular and graph automata, such as the SCA, NICA and ACA
models discussed in this paper and analyzed in more detail in our related
work [39, 8, 9], is to gain new insights into the emerging behavior and col-
lective dynamics of various large-scale multi-agent systems and other dis-
tributed computational and communication infrastructures via modeling,
simulating and analyzing them from a dynamical systems perspective.

REFERENCES

[1] S.A. Brueckner, H. Van Dyke Parunak, Proceedings of the 2nd International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-03), ACM, New York, NY, USA, 2003.

[2] D. Cornforth, D.G. Green, D. Newth, Physica D 204, 70 (2005).
[3] P. Tosic, G. Agha, Proceedings of the 3rd European Workshop on

Multiagent Systems (EUMAS’05), Brussels, Belgium, 2005, pp. 415–426.
[4] P. Tosic, Cellular Automata for Distributed Computing: Models of Agent

Interaction and Their Implications, IEEE International Conference on
Systems, Man and Cybernetics (SMC’05), Waikoloa, The Big Island of
Hawaii, USA 2005.

http://dx.doi.org/10.1016/j.physd.2005.04.005


234 P.T. Tošić

[5] P. Tosic, Lect. Notes Comput. Sci. 3993, 272 (2006).
[6] P. Tosic, G. Agha, Lect. Notes Comput. Sci. 3305, 861 (2004).
[7] P. Tosic, Proceedings ACM Computing Frontiers (CF’04), Ischia, Italy, 2004.
[8] P. Tosic, G. Agha, APDCM Workshop, Proceedings of the 18th IEEE

International Parallel and Distributed Processing Symposium, Santa Fe, New
Mexico, USA, 2004.

[9] P. Tosic, G. Agha, Proceedings of the First European Conference on
Complex Systems (ECCS’05), Paris, France, 2005.

[10] J. von Neumann, Theory of Self-Reproducing Automata, edited and
completed by A.W. Burks, Univ. of Illinois Press, Urbana 1966.

[11] E. Goles, S. Martínez, Neural and Automata Networks: Dynamical Behavior
and Applications, Kluwer, 1990.

[12] E. Goles, S. Martínez (eds.), Cellular Automata and Complex Systems,
Kluwer, 1999.

[13] H. Gutowitz (ed.), Cellular Automata: Theory and Experiment, The MIT
Press/North-Holland, 1991.

[14] S. Wolfram, Phys. Scr. T9, 170 (1985).
[15] S. Wolfram (ed.), Theory and Applications of CA, World Scientific,

Singapore 1986.
[16] S. Wolfram, Cellular Automata and Complexity (collected papers),

Addison-Wesley, 1994.
[17] S. Wolfram, A New Kind of Science, Wolfram Media, Inc., 2002.
[18] M. Garzon, Models of Massive Parallelism: Analysis of Cellular Automata

and Neural Networks, Springer, 1995.
[19] I. Czaja, R.J. van Glabbek, U. Goltz, Lect. Notes Comput. Sci. 609, 89

(1992).
[20] R.J. van Glabbek, U. Goltz, Lect. Notes Comput. Sci. 469, 309 (1990).
[21] N. Fatès, E. Thierry, M. Morvan, N. Schabanel, Theor. Comput. Sci. 362, 1

(2006).
[22] T.E. Ingerson, R.L. Buvel, Physica D 10, 59 (1984).
[23] R. Milner, A Calculus of Communicating Systems, Lecture Notes in

Computer Science, Springer-Verlag, 1980.
[24] J.C. Reynolds, Theories of Programming Languages, Cambridge Univ. Press,

1998.
[25] R. Sethi, Programming Languages: Concepts and Constructs (2nd ed.),

Addison-Wesley, 1996.
[26] L.P. Kaelbling, ACM SIGART Bulletin 2, 85 (1991).
[27] R.A. Brooks, Proceedings of the 12th International Joint Conference on

Artificial Intelligence (IJCAI-91), Sydney, Australia; J. Myopoulos, R. Reiter
(eds.), pp. 569—595.

[28] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd
edition, Prentice Hall series in AI, Pearson, 2010.

http://dx.doi.org/10.1007/11758532_38
http://dx.doi.org/10.1007/978-3-540-30479-1_89
http://dx.doi.org/10.1088/0031-8949/1985/T9/029
http://dx.doi.org/10.1007/3-540-55610-9_169
http://dx.doi.org/10.1007/3-540-55610-9_169
http://dx.doi.org/10.1007/3-540-53479-2_13
http://dx.doi.org/10.1016/j.tcs.2006.05.036
http://dx.doi.org/10.1016/j.tcs.2006.05.036
http://dx.doi.org/10.1016/0167-2789(84)90249-5
http://dx.doi.org/10.1145/122344.122361


On Modeling Large-Scale Multi-Agent Systems. . . 235

[29] L. Gardelli, M. Viroli, M. Casadei, A. Omicini, Lect. Notes Comput. Sci.
4389, 254 (2007).

[30] A. Helleboogh, G. Vizzari, A. Uhrmacher, F. Michel, Auton. Agent.
Multi-Agent Syst. 14, 87 (2007).

[31] D. Weyns, A. Omicini, J. Odell, Auton. Agent. Multi-Agent Syst. 14, 5
(2007).

[32] R. Cori, Y. Métivier, W. Zielonka, Inform. Comput. 106, 159 (1993).
[33] C. Barrett et al., Discrete Mathematics and Theoretical Computer Science

Proceedings AA (DM-CCG), 2001, pp. 95—110.
[34] C. Barrett et al., Theor. Comput. Sci. 295, 41 (2003).
[35] C. Barrett, H. Mortveit, C. Reidys, Appl. Math. Comput. 107, 121 (2000).
[36] C. Barrett, H. Mortveit, C. Reidys, Appl. Math. Comput. 122, 325 (2001).
[37] P. Tosic, IJFCS 17, 1179 (2006).
[38] P. Tosic, DMTCS Proceedings, Automata 2010 — 16th Intl. Workshop on

CA and DCS, 2010, pp. 125–144.
[39] P. Tosic, IJNCR 1, 66 (2010).
[40] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[41] W. Ross Ashby, Design for a Brain, Wiley, 1960.

http://dx.doi.org/10.1007/978-3-540-71103-2_15
http://dx.doi.org/10.1007/978-3-540-71103-2_15
http://dx.doi.org/10.1007/s10458-006-0014-y
http://dx.doi.org/10.1007/s10458-006-0014-y
http://dx.doi.org/10.1007/s10458-006-0012-0
http://dx.doi.org/10.1007/s10458-006-0012-0
http://dx.doi.org/10.1006/inco.1993.1052
http://dx.doi.org/10.1016/S0304-3975(02)00395-X
http://dx.doi.org/10.1016/S0096-3003(98)10114-5
http://dx.doi.org/10.1016/S0096-3003(00)00042-4
http://dx.doi.org/10.1142/S0129054106004339
http://dx.doi.org/10.4018/jncr.2010070105

	1 Introduction and motivation: CA models for large-scale multi-agent systems
	2 Cellular automata basics
	3 Related work
	4 On temporal cycles in parallel and sequential simple threshold CA 
	5 Future directions for modeling MAS by cellular automata: Genuinely Asynchronous CA
	6 Summary

