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A strictly topological aspect in renormalization theory is tackled from
Kadanoff’s scaling picture which splits the square lattice into nested blocks
and we study how to embed similar schemes onto the triangular lattice.
From a preliminary study on the various ways of splitting the dual honey-
comb into polyhexes while preserving symmetries, it is shown that only two
patterns are relevant: either a 3-hexe prototile or a 4-hexe prototile. The
first one has been investigated in detail by Niemeijer and van Leeuwen.
The other alternative leads to an “arrowhead picture” and is the core of
our proposal. As far as we know, the resulting spin lattice has never been
investigated elsewhere. It should be pointed out that these scaling pictures
differ from exactly solved models and in particular from the star-triangle
transformation.
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1. Introduction

The renormalization methods appeared these last forty years in the area
of statistical physics and dynamical systems. They apply quite well to the
study of large scale homogeneous systems, illustrated by the image of the
“chessboard” whose side, of length L, represents the macroscopic scale while
the square of the chessboard, whose side is of length ξ � L and where ξ is the
“correlation length”, represents the mesoscopic scale which defines a homo-
geneous subsystem. These systems are thus characterized by a translational
invariance by a vector of modulus ξ, namely, they are periodic. The renor-
malization methods have especially proven their efficiency in the study of
critical phenomena where classical methods are shown to be unsuccessful —
∗ Presented at the 2nd Summer Solstice International Conference on Discrete Models
of Complex Systems, Nancy, France, June 16–18, 2010.
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at least until novel exact methods arise. A critical system is characterized
by a scale invariance whose effect is a self-similar behaviour and a divergence
of the correlation length at the critical point θ = θc of the control param-
eter. Usually, the divergence follows a power law (or “scaling law”) of the
form ξ(θ) ≈ (θ− θc)−ν , where ν is the critical exponent. The same goes for
the correlation length as well as for any thermodynamic quantity expressed
in terms of the deviation θ − θc bearing a specific critical exponent. It is
up to the renormalization methods to deduce the value of these exponents,
and thereby the behaviour of the system in a critical situation from only
the property of scale invariance. By relying upon the self-similarity of the
system, a way is to split it into nested blocks and to yield local averages
in each of them (Kadanoff’s construction [1]). The long-range correlations
remain unchanged after a sequence of transformations only if the system lies
in a critical state. The operator defines a “renormalization (semi-)group” —
in the algebraic meaning — and the sequence converges in that case towards
a non-trivial fixed point [2,3,4,5]. The reader may refer to a plentiful litera-
ture (e.g. [6,7,8,9]) as well as very accessible digests (e.g. [10]) for a general
review on renormalization methods and statistical mechanics.

We focus here on the topological aspect of the problem of scale change un-
derlying this method. From Kadanoff’s “scaling picture”, we examine similar
schemes iterated on the triangular lattice. Although Kadanoff construction,
from a strictly topological standpoint, is straightforward in the (4-valent)
orthogonal lattice, it is far from being so in the (6-valent) triangular one.
For this reason, we first give an insight onto the various ways of tiling the
plane from a primitive template, or “polyhexe” of size p (a p-hexe) in the
hexagonal tessellation, the dual of which being the triangular lattice. It will
be easy to show that tiling the plane with polyhexes of minimal size and
with maximal symmetry, two requirements for simplifying a Kadanoff-like
renormalization as much as possible, leads to only both prototiles: either a
3-hexe like in the Niemeijer–van Leeuwen construction or a 4-hexe as it is
proposed herein.

It should be pointed out that Kadanoff’s approximation differs from ex-
actly solved models and in particular from the star-triangle transformation,
including the direct formulation of the duality relation in the partition func-
tion (see [11] and references therein) or the real-space renormalization in
differential form (e.g. [12]).

After a recall of Kadanoff’s construction in Sec. 2, we highlight in Sec. 3
the two ways of tiling the honeycomb adequately by a suitable “prototile”.
The Niemeijer–van Leeuwen scaling picture is described in Sec. 4 and the
core of our proposal in Secs. 5–6. This work is an extension of a previous
study related to cellular automata and presented elsewhere [13].
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2. Kadanoff’s construction

Kadanoff’s scaling picture [1] (see also [5,2,10,7]) defined on an orthogo-
nal lattice of spins for the Ising model is displayed in Fig. 1, where the length
a separating two neighbouring sites is the minimal scale. The validity of the
construction comes from the fact that the interactions are short-range, which
allows us to consider only the nearest-neighbour interactions. Each spin, as-
sociated to a site, has a proper energy (↑) or (↓) depending on the external
magnetic field and each pair of neighbours, associated to a bond, has an
interaction energy depending on whether they point towards the same di-
rection or not. The calculation of the energy of the global configuration is
renormalized by forming square blocks, or “cells”, of 2 × 2 sites (Fig. 1 (a))
and yielding a local average according to a majority rule (the block has an
arbitrary size but should contain a small number of sites and size 2 × 2 is
usually chosen in the construction). Each block is then likened to a single
“spin” at the upper scale of length 2a and the lengths are contracted by a
factor 2 to maintain the initial density of the sites (Fig. 1 (b)). The construc-
tion is thus iterated until the correlation length ξ of the system in critical
state is reached.

(a)

(b)

Fig. 1. Kadanoff’s construction on the orthogonal lattice: dotted lines stand for
inner interactions within a block, full lines for interactions between neighbouring
blocks (after Lesne [7]).

We just focus on the graph transformation induced by the contrac-
tion. Let us denote the lattice, of finite size but toroidal, of Fig. 1 (a) by
Kn = (Vn, En) of order N =| Vn |= 2n × 2n. A vertex1 (i, j) is connected
horizontally to (i± 1, j) and vertically to (i, j ± 1), where 0 ≤ i, j < 2n and
the addition is modulo 2n. Since the torus is 4-regular, the number of edges

1 A vertex (resp. an edge) in the graph stands for a site (resp. a bond) in the lattice
but no confusion is to be feared.
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standing for the nearest-neighbour interactions is clearly | En |= 2N (the
wrapped edges are not displayed). In fact, periodic boundary conditions
may be considered in the thermodynamic limit N →∞.

From these notations, the Hamiltonian of the model has the form

H = −J
∑
En

σijσi′j′ − h
∑
Vn

σij , (2.1)

where σij = ±1 is the value of the spin of site (i, j) and h denotes the
magnetic field and where ((i, j), (i′, j′)) are neighbouring sites and J denotes
the energy of a nearest-neighbour interaction. We will consider the reduced
form

H = K
∑
En

σijσi′j′ (2.2)

in a zero magnetic field h = 0 and where K is the normalized coupling
constant associated to J and in which temperature and Boltzmann constant
are absorbed. In this case, lattice Kn is nothing but a signed graph and the
partition function, from which all thermodynamic functions are deduced, is
given by

ZN =
∑
s

exp(H(s)) , (2.3)

where the summation is over all states s of the system.
The Hamiltonian may also take the form

H = K1

∑
E

(1)
n

σijσi′j′ +K2

∑
E

(2)
n

σijσi′j′ (2.4)

in the case where no isotropy is assumed: K1 and K2 become the horizontal
and vertical coupling constants associated to the respective subsets E(1)

n

and E(2)
n of En. This form will be ignored in the sequel, unless mentioned

otherwise.
In Fig. 1 (a), the lattice is divided into NB = 4n−1 blocks of ld = 2 × 2

sites (2i, 2i+1)× (2j, 2j+1) with 0 ≤ i, j < 2n−1 (l is the stretch factor and
d the dimension). The edge set En is partitioned into a subset E′n of “inner
bonds” within a block (in dotted lines) and a subset E′′n of “outer bonds”
between neighbouring blocks (in full lines). Thus

| E′n |= 4NB , | E′′n |=| E′n | ⇒ | E′n | + | E′′n |= 2N =| En | . (2.5)

Since the contraction shrinks a 2× 2 block into a single “spin” and a pair of
outer bonds into a single “bond”, that yields the new, renormalized lattice
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K̃n = (Ṽn, Ẽn) in Fig. 1 (b) isomorphic to Kn−1, of order Ñ = NB =| Vn−1 |,
where

Ẽ′n = ∅ , | Ẽ′′n |= 1
2 | E

′′
n |= 2NB =| En−1 | (2.6)

and finally
Ṽn ∼= Vn−1 , Ẽn = Ẽ′′n

∼= En−1 . (2.7)

To be really precise, the renormalized lattice K̃n is isomorphic (∼=) by a
homothety of ratio 2 to the dual lattice2 whose vertex set Ṽn is the centre
set of the NB blocks.

After shrinking, the new Hamiltonian has the similar form

H̃ = K̃
∑

Ẽn
∼=En−1

σ̃ij ˜σi′j′ , (2.8)

where σ̃ij ˜σi′j′ are all pairs of the block-spin variables and K̃ is the new,
renormalized coupling constant; the isomorphic mapping K̃n 7−→ Kn−1 de-
notes the shrinking reduction of Fig. 1 (b). In Kadanoff’s assumption, an
homogeneous transformation on analytic functions of the form

F(K) = l−dF
(
K̃
)

=
Ñ

N
F
(
K̃
)
, (2.9)

ξ(K) = lξ
(
K̃
)

(2.10)

is expected on all thermodynamic quantities such as the free energy F and
the correlation length ξ which do not depend of the lattice spacing a! Their
(universal) critical exponents will thus be obtained from a non-trivial fixed
point

K̃ = K∗ (2.11)

reached near the critical temperature Tc.

3. Tiling the plane with polyhexes

There exist multiple ways of arranging a grid network into a torus.
In fact, any tiling of the plane formed by the assembly of copies of a “prim-
itive” piece of elementary tiles, or prototile3, induces a compatible torus

2 For a strict definition of “duality”, refer to the following section.
3 Respectively polyiamond, polyomino, polyhexe (or n-iamond, n-omino, n-hexe) ac-
cording to the regular (triangular, square, hexagonal) tessellation {3, 6}, {4, 4}, {6, 3}
of the plane, where {p, q} is the Schläfli symbol [14, 15]. The Schläfli symbol gives a
precise definition of a regular tiling; in particular the dual of {p, q} is {q, p} and vice
versa.
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by duality [16, 17]. For an illustration of this problem, see the example
of polyominos tiling the plane in the {4, 4} tessellation and leading to a
“double-loop” circulant graph [18].

Let us observe now an usual but similar construction in the hexagonal
{6, 3} case, borrowed from [19] and [20].

Each vertex i is connected with vertices i± a, i± b, i± c, where a, b, c
are the three generators satisfying a+ b+ c = 0 mod n. A simple example is
displayed in Fig. 2 with n = 7 and (a, b, c) = (1, 2, 4), showing the tiling with
polyhexes (a), its associated torus (b) and its triple-loop circulant graph (c)
whose edge set can split into three edge-disjoint loops corresponding with
the three generators and whose adjacency matrix is a circulant matrix.

(a) (b)

(c) (d)

Fig. 2. (a) Tiling the plane with polyhexes. (b) Associated torus. (c) Associated
triple-loop circulant graph. (d) Symmetry axes of the tiling.

Indeed, this minimal construction may appear as a particular case lead-
ing to the complete graph K7 in Fig. 2 (c), but the reader could easily deal
with a 19-hexe by adding a 12-ring surrounding this 7-hexe prototile, and
so forth. The order ND of the circulant graphs which belong to this triple-
loop family is clearly ND = 3D2 + 3D + 1, where D = 0, 1, 2, 3 . . . is their
diameter. Although circulant graphs may have nice properties, our main
observation is that the symmetry axes in the elementary {6, 3} tessellation
and the symmetry axes induced by the prototile do not coincide, as shown
in Fig. 2 (d).
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We try now to find a polyhexe of size p fulfilling Kadanoff’s require-
ment, in other words, one should have a small size and preserves the implicit
symmetry. Moreover, in order to simplify the Hamiltonian in a block-spin
transformation, we require that the polyhexe must be both of minimal size
and with maximal symmetry. Fixing p < 7, it would be easy but tedious to
show that any p-hexe with p = 2, p = 5 or p = 6 must be eliminated. The
remaining symmetric cases, displayed in Fig. 3, wherein p = 3 and p = 4,
will yield respectively the pattern of Niemeijer–van Leeuwen and our own.
It can be already observed that the 3-hexe in (a) is centred at the junction
point of the three hexagons and will generate a new hexavalent lattice by a
homothety of ratio

√
3, rotated by π/2 (or π/6) and shifted by

√
3/3; their

construction is described hereafter. On the other hand, the centre set of
the 4-hexes in (b) is the image of the initial vertex set by a homothety of
ratio 2 stabilizing the symmetry axes, namely neither rotated nor shifted;
the construction is presented in Sec. 5.

(a) (b)
Fig. 3. Tiling the plane with polyhexes preserving symmetries: (a) a 3-hexe pro-
totile centred at the junction point of three adjacent hexagons, (b) a 4-hexe prototile
stabilizing the honeycomb symmetry.

4. The Niemeijer–van Leeuwen scaling picture

The “spin-cell” transformation is an important contribution of Niemeijer
and van Leeuwen to the Kadanoff derivation of the scaling laws in the tri-
angular lattice [21]. The transformation is again a subdivision of the spin
system into “cells” assumed to interact in a similar way as the original spins.
The cells are up(-pointing) triangles4 arranged in the original hexavalent
lattice as shown in Fig. 4, where the sites of the new lattice, as centres of
the triangles, form again a hexavalent lattice isomorphic to the original one;

4 Down(-pointing) in [22].
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Fig. 4. Spin-cell transformation in the triangular lattice: the circle highlights a
typical cell; a new lattice is induced by the transformation, whose sites are the
centre of the cells. Inset: a pattern of nearest-neighbour intracell and intercell (in
dotted lines) interactions; cells are labelled (j′, i′1, i

′
2, i
′
3), sites are labelled (1, 2, 3);

beneath: the 3-hexe prototile tiling the dual honeycomb in Fig. 3 (a).

the initial “lattice spacing”, or distance between neighbouring sites, is taken
as unity. Periodic boundary conditions are considered with N sites in the
thermodynamic limit N →∞.

The transformation from the site-spin Hamiltonian to a cell-spin Hamil-
tonian takes the general form

H(s) =
∑
a

Kasa 7−→ H′(s′) =
∑
a′

K ′a′s
′
a′ , (4.1)

sa =
∏
i∈a

si , s′a =
∏
i′∈a′

s′i , (4.2)

where a runs through all subsets of sites i, a′ runs through all subsets of
cells i′, Ka and K ′a′ (in which temperature and Boltzmann constant are
absorbed) are respectively the site–site interaction and the cell–cell interac-
tion parameters and where {s} (resp. {s′}) denotes the set of all site–spins
(resp. cell–spins) configurations. The transformation H(s) 7→ H′(s′) defines
the renormalization operator and the ratio of homogeneity

N ′

N
= l−d , (4.3)

where N ′ stands for the number of cells, d = 2 the dimension of the lattice
and l the stretch factor, should appear somehow like in Eq. (2.9). Evidently,
the subdivision defines a partition of the vertex set as highlighted by the
circle in Fig. 4, whence l =

√
3 and 3N ′ = N . Note that the new lattice is

rotated by π/6 and shifted by
√

3/3.



Embedding Kadanoff’s Scaling Picture into the Triangular Lattice 257

We focus now on how the edge set of the original lattice is organized.
A perturbative approach is adopted, which splits the Hamiltonian into an
unperturbed part H0 and a remainder V as

H = H0 + V , (4.4)

where intracell interactions are collected in H0 and intercell interactions in
V as

H0 = K
∑
j′

H0
j′ = K

∑
j′

(
s1j′s

2
j′ + s2j′s

3
j′ + s3j′s

1
j′
)

(4.5)

Vi′1j′ = K
(
s2i′1

+ s3i′1

)
s1j′ ,

Vi′2j′ = K
(
s3i′2

+ s1i′2

)
s2j′ ,

Vi′3j′ = K
(
s1i′3

+ s2i′3

)
s3j′ , (4.6)

over the whole lattice, where K is the nearest-neighbour coupling constant
and according to the inset in Fig. 4: the superscript denotes the position
of the site in the corresponding cell. The general expression of Hamilto-
nian in Eq. (4.1) with subsets {a, a′} is justified by the authors, not only
because they do not limit their study to a first-order perturbation but also
because they extend it to a more sophisticated cluster approximation. As
far as we are concerned we are strictly interested by the nearest-neighbour
interactions, whence the expressions above with the simple factor K.

We finally check whether the construction really yields a partition of the
edge set. For simplicity let

E(H) =
{
E
(
H0
)
, E(V)

}
(4.7)

be the edge set induced by H0 + V. Looking at the inset, we observe that
the interaction patterns, related to “their” central cell j′ are oriented to-
wards, say, the N–SE–SW directions and therefore cannot overlap. Now,
we enumerate three pairs of intercell bonds per cell according to Eq. (4.6),
whence

| E(H) |=| E
(
H0
)
| + | E(V) |= 3N ′ + 6N ′ = 3N . (4.8)

5. The arrowhead torus

A stepwise construction generated by the prototiling of Fig. 3 (b) can be
iterated ad infinitum and has the property of being self-similar. The result
is an arrowhead torus5 whose properties are examined hereafter. The inset

5 Whose name is borrowed from Mandelbrot for one of the self-similar Sierpiński figures
[23].
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in Fig. 5 highlights a reoriented N–SW–SE pattern of the 4-hexe prototile,
step two induces a tiling with a new prototile made of the union of four
4-hexes giving a 16-hexe prototile.

A finite-size representation of the arrowhead is displayed on the left-
hand side of Fig. 5, its hexagonal representation on the right side; both
representations are isomorphic and we will only consider the hexagonal one
in the sequel. The Sierpiński-like patchworks [24] highlight their recursive,
hierarchical structure. As a Cayley graph, the arrowhead is vertex-transitive.
The reader is referred to [25] for more details.

Fig. 5. Generic and hexagonal representation of an arrowhead of finite-size (n = 8)
— inset: stepwise prototiling in the dual honeycomb for the first two steps.

Let n ≥ 0 be the “size” of the arrowhead, denoted AT n = (Vn, En). The
order N of AT n is exactly | Vn |= 4n and the vertices are numbered in the
set

In = {0, 1, 2, . . . , 4n − 1} (5.1)

according to a scheme resulting from the recursive construction of a finite-
size torus within the infinite lattice. We denote by I∗1 = {1, 2, 3} the gener-
ating set.

Since the arrowhead is 6-regular, its edge set cardinality is | En |= 3N .
The connection scheme is defined as follows. Let X be any direction in
the ordered set (N, SW, SE), let (δN, δSW, δSE) = (1, 2, 3) be the set of
associated increments and X be the opposite direction in (S, NE, NW)
ofX. Then

Xν0(0) = Xν0(0) = 0 (5.2)
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and ∀n ≥ 1
Xνn(4x) = 4x+ δX , (5.3)
Xνn(4x) = 4

(
Xνn−1(x)

)
+ δX , (5.4)

where Uνk(u) denotes the neighbour in direction U of vertex u in AT k.
As an illustration and referring to Fig. 6, knowing the whole configuration

of AT 2, let us examine which are the S, NE and NW neighbours of, say
vertex 40, in AT 3:

Sν3(40) = 4
(
Sν2(10)

)
+ δN = 4 · 3 + 1 = 13

NEν3(40) = 4
(
NEν2(10)

)
+ δSW = 4 · 8 + 2 = 34

NWν3(40) = 4
(
NWν2(10)

)
+ δSE = 4 · 1 + 3 = 7 .

Incidentally, Fig. 6 which displays how is arranged the vertex set In in
AT n and how it is induced by In−1 gives also a rough insight on how a scale
change can be organized. This construction is examined hereafter.

Fig. 6. Arrangement of the vertex set in AT n for n = 3 and its induced connection
scheme. The pattern could also be viewed as a scale change by contraction of AT n

into AT n−1: the centre of the 4-hexes is displayed in grey.

6. Scaling pictures in the arrowhead

6.1. Scaling a critical system

Starting from Kadanoff’s picture in Sec. 2 and referring to the topology
of the arrowhead, we suggest a new construction induced by the 4-hexe of
Fig. 3 (b). So given In in (5.1) we define the subset

In,p = {x ∈ In : x ≡ 0 (mod 4p)} (0 ≤ p ≤ n) (6.1)

of sites of In whose index is a multiple of 4p. For any fixed p, a subset In,p
defines a subdivision of the lattice into 4n−p blocks of size 4p denoted by

Bn,p(x) = {x+ i : i ∈ Ip} ∀x ∈ In,p (6.2)
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and whose site x having its index in In,p is centre. Such a subdivision
is highlighted in the inset of Fig. 5 for p = 1 and p = 2. In a stepwise
renormalization, with nearest-neighbour interactions and following a first-
order perturbative scheme, we are only interested by the case p = 1. So, for
clarity’s sake, we rewrite In,p and Bn,p as

In,1 = {x ∈ In : x ≡ 0 (mod 4)} (6.3)
Bn,1(x) = {x+ i : i ∈ I1} ∀x ∈ In,1 (6.4)

as displayed in Fig. 7, where In,1 is the set of black sites and Bn,1(x) a 4-hexe
enclosing the sites labelled {x, x + 1, x + 2, x + 3} and arranged according
to the N–SW–SE pattern. The number NB of blocks Bn,1(x) is evidently
| In,1 |= 4n−1.

Fig. 7. Block subdivision, inner (in bold lines) and outer edges. Inset: labelling
edges i1 or i1i2, respectively for inner and outer edges; beneath: the macrocell
before and after contraction.

We now partition the edge set as follows. Let

I ′n,1 = In − In,1 (6.5)

be the set of grey sites. En is partitioned into a subset E′n of “inner bonds”
within a block (in bold lines) and a subset E′′n of “outer bonds” between
neighbouring blocks. Given x ∈ In,1 and x′ ∈ I ′n,1, given two generators
i1, i2 ∈ I∗1 = {1, 2, 3} :

• an inner edge (x, x′) is labelled i1 if x′ is the i1-neighbour of x,

• an outer edge (x′, x′′) is labelled i1i2 if x′′ is the i2-neighbour of x′.
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The detail is displayed in the upper part of the inset: {E′n, E′′n} is clearly a
partition because all patterns have the form N–SW–SE hence cannot overlap
and, on the other hand,

| E′n |= 3NB , | E′′n |= 3 | E′n |⇒ | E′n | + | E′′n |= 12 · 4n−1 =| En | .
(6.6)

The bottom part of the inset first shows a macrosite in the centre of a
hexagonal macrocell with a stretch factor 2, yielding a new lattice whose
vertex set is reduced to In,1. The contribution of a block Bn,1(x) to its six
neighbours is emphasized by outgoing arcs, namely, three arcs such that i2 =
i1 on the N–SW–SE pattern and three pairs with commuted labels i2 6= i1 on
the S–NE–NW pattern, that is, nine outgoing arcs altogether. Conversely,
the contribution from its six neighbours is emphasized by incoming arcs
according to a symmetrical pattern: evidently, two opposite directions N–S,
SW–NE, SE–NW show the same label set.

Finally, the macrocell is contracted by a factor 2, giving a new, renor-
malized lattice ˜AT n = (Ṽn, Ẽn) isomorphic to AT n−1. Thus In,1 is mapped
to In−1 and since the contraction shrinks a block into a single “spin” and a
triplet of outer bonds into a single “bond”, then

Ẽ′n = ∅ , | Ẽ′′n |= 1
3 | E

′′
n |=| E′n |= 3NB =| En−1 | (6.7)

and finally
Ṽn ∼= Vn−1 , Ẽn = Ẽ′′n

∼= En−1 . (6.8)

According to the chosen N–SW–SE pattern, the edge set of the arrowhead
could also be partitioned into three classes induced by the generator I∗1 .
Therefore, in the hypothesis that no isotropy is assumed, the Hamiltonian
might take the form

H = K1

∑
E

(1)
n

σijσi′j′ +K2

∑
E

(2)
n

σijσi′j′ +K3

∑
E

(3)
n

σijσi′j′ , (6.9)

where K1, K2, K3 would be the coupling constants associated to the respec-
tive subsets E(1)

n , E(2)
n , E(3)

n of En, induced by their generator in I∗1 .
Exploring the impact of the above picture upon the approximate expo-

nents of a critical Ising system and, above all, upon the way to get them
(or should it be otherwise) from an analysis similar to the Kadanoff or to
the Niemeijer–van Leeuwen transformation is beyond the scope of this paper.
Instead, we choose to forget criticality and, referring back to Introduction,
to apply hereafter the scaling property of the arrowhead to homogeneous
systems with a rather trivial example.
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6.2. Scaling a large scale homogeneous system

Let us consider a sample representing a mixture made up of two phases
φ1 and φ2, mixed according to concentrations κ1 and κ2 with κ1+κ2 =1. By
applying the above construction scheme, we plan to determine the correla-
tion length ξ of a mesoscopic scale referred to a representative elementary
volume (REV). At this scale, the mixture may be considered as homoge-
neous.

Let fp be the occurrence frequency of phase φ1 in a block of size 4p

(0 ≤ p ≤ n). For a given site, one has in particular f0 = 1 if φ1 is present in
this site and f0 = 0 otherwise. For a block of size 4p+1, the frequency fp+1

follows from the recurrence relation

fp+1 = ψ(fp) =
1
4

3∑
i=0

f (i)
p , (6.10)

where the f (i)
p denote the frequencies within each of the four corresponding

sub-blocks labelled i in I1. Whenever the medium is globally homogeneous,

∀ε > 0 ∃m ∈ IN : | fm+1 − fm |≤ ε , (6.11)

where ε is an arbitrary small real number (a divergence would occur other-
wise). It follows from this that sequence {fp} is a Cauchy sequence which
converges towards the finite limit

Fig. 8. Determination of a REV in a homogeneous mixture at the global scale with
concentrations κ1 = 70% and κ2 = 30% (phase φ1 appears in light grey). The
pattern contains 40301 cells. The hexagonal polyhexe B8,4(0) contains 256 cells
and defines a representative volume.
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f∗ = ψ(f∗) = κ1 . (6.12)

This iterated construction leads to partition of the lattice into 4n−m blocks of
size 4m, each of these blocks having the property of defining a representative
volume of the whole mixture.

Fig. 8 displays a pattern6 of the mixture, covering about 40 000 cells and
with concentrations κ1 = 70% and κ2 = 30%, as well as a hexagonal block
B8,4(0) entered in cell 0 and defining a representative volume of 256 cells.
Table I details the convergence of the iterated sequence, ensured for m = 4
with accuracy ε = 1%.

TABLE I

Convergence of the iterated sequence of frequencies, attained after 4 iterations with
accuracy ε = 1%.

f0 1.00000
f1 0.50000
f2 0.68750
f3 0.71875
f4 0.70312
f5 0.69922

7. Conclusion

Our contribution in this paper was to tackle the Kadanoff scaling pic-
ture and to embed it into the triangular lattice. A preliminary study on
the various ways of prototiling the honeycomb tessellation has shown that
only two patterns are relevant. The first one, constructed from a 3-hexe
prototile, had been investigated in detail by Niemeijer–van Leeuwen. First-
order — nearest-neighbour — approximations were carried out to extract the
critical exponents from the triangular Ising model according to the frame-
work described in Sec. 4. Their work includes also a part of second-order
approximations or more, as well as more sophisticated clustering approxi-
mations; this part was not tackled in this paper and the reader is referred
again to [21, 22] for more details; in short, they observed that the accuracy
of their approximation depends strongly upon the symmetry of the cluster.
The other alternative, constructed from an “isotropic” 4-hexe prototile is the
core of our proposal. As far as we know, the resulting spin lattice has never
been investigated elsewhere. Although the physical content of our proposal
is reduced to its bare topological aspect, it is hoped yet that it would enable

6 In a network of size n = 8.
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a shrewd reader to compare them. One can believe that the symmetry of
this “arrowhead picture” might yield a better approximation of the univer-
sal critical exponents or at least bring out some simplified renormalization
procedure to get them. The validity of our assumption is left to the reader’s
attention as an open question.

I am indebted to Zoltán Rácz and Henk Hilhorst for motivating this
preamble after having read a short and somewhat naive approach which
should be viewed as an extended abstract.
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