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The first steps towards linearisation of partial orders and equivalence
relations are described. The definitions of partial orders and equivalence
relations (on sets) are formulated in a way that is standard in category the-
ory and that makes the linearisation (almost) automatic. The linearisation
is then achieved by replacing sets by coalgebras and the Cartesian product
by the tensor product of vector spaces. As a result, definitions of orders
and equivalence relations on coalgebras are proposed. These are illustrated
by explicit examples that include relations on coalgebras spanned by grou-
plike elements (or linearised sets), the diagonal relation, and an order on
a three-dimensional non-cocommutative coalgebra. Although relations on
coalgebras are defined for vector spaces, all the definitions are formulated in
a way that is immediately applicable to other braided monoidal categories.
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1. Introduction

Mathematical entities of the same kind can be combined to produce a
new object of the same kind: sets can be combined by the Cartesian prod-
uct, vector spaces can be combined by the tensor product etc. Objects with
a symmetry can also be combined together without the loss of overall sym-
metry. The Cartesian product of two sets on which a group G acts has
a G-action provided by the diagonal map. Two vector spaces on which a
Lie group or a Lie algebra is represented can be tensored together to pro-
duce a new representation of this group or algebra1. Formal key property
allowing for the latter is the existence of the tensor product or a monoidal

∗ Presented at the Conference “Geometry and Physics in Cracow”, Poland, September
21–25, 2010.

1 This is the same principle by which simple quantum mechanical systems can be
combined into compound systems without the loss of overall symmetry.
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structure in the category of representations of a group (or the category of
G-sets in the former case). With the birth of quantum groups it has been
realised that also their representation spaces can be tensored together. Fur-
thermore, the representations of quantum groups (in the strict sense, that
is (dual) quasitriangular Hopf algebras) enjoy a specific symmetry, given in
terms of a braiding. It has been then observed that many non-commutative
effects can be explained by using a non-trivial braiding. In other words, the
non-commutativity can be incorporated into the notion of symmetry in the
category of vector spaces. This has led to very successful an rich theory
of braided groups and braided geometry initiated by Majid [1], [2, Chap-
ter 10], [3].

Non-commutative geometry can be understood as a linearisation of the
classical (commutative) geometry: the set theoretic notions of classical ge-
ometry connected by the Cartesian product are now replaced by (non-
commutative) objects belonging to a category with a monoidal or tensor
product2. It is the flexibility of tensor product that allows for emergence
of non-commutative effects. Quantum groups or Hopf algebras are a prime
example of this linearisation process. The axioms of a Hopf algebra can
be obtained immediately from that of a group by replacing the Cartesian
product by the tensor product in the axioms of a group written in a fully
element-independent way. While there is only one possibility of defining a
comultiplication on a group (and this comultiplication or the diagonal map
is necessarily cocommutative), the use of the tensor product opens up many
new possibilities.

A programme of developing non-commutative geometry through monoid-
al categories has been initiated recently by Maszczyk and described in his
paper [4] and numerous lectures. This programme is synthetic in nature, by
which we mean that geometric forms are realised in a suitable category [5].
With this in mind in [6] we have reformulated the notion of a principal
bundle within a monoidal category and shown that — in an appropriately
chosen category — this notion coincides with that of a faithfully flat Hopf–
Galois extension or a principal comodule algebra which is by now widely
accepted as a suitable non-commutative version of a principal fibre bundle
(a mathematical object underlying pure gauge theory); see e.g. [7, 8].

The aim of these notes is by far more elementary. We would like to ar-
gue what should be meant by a partial order and by an equivalence relation
within a braided monoidal category. A similar problem of formulating gen-
eralised or quantum relations in terms of von Neumann (operator) algebras
was addressed recently in [9].

2 This is very reminiscent of the transition from classical to quantum mechanics, where
classical observables understood as functions on the (symplectic) phase space are
replaced by (linear) operators acting on Hilbert spaces in quantum mechanics.
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The paper is organised as follows. In Sec. 2 we formulate the stan-
dard definitions of equivalence relations and orders on sets in a way that
is practiced in category theory; see [10, Section 2.5]. Essentially this is a
formulation which avoids using typical set-theoretic concepts such as an ele-
ment, and replaces them by conditions on functions (or morphisms) and by
universal constructions. In Sec. 3 we translate the abstract formulation of
relations on sets to the case of vector spaces. The guiding principle here is
that coalgebras should be understood as non-commutative sets. Again, this
translation avoids the use of concepts typical for vector spaces, and hence
is applicable to any braided monoidal category (which admits some uni-
versal constructions). The translation is illustrated by examples in Sec. 4.
Section 5 contains a glossary of coalgebraic terms in hope of making the
material of Secs. 3 and 4 more accessible to those, who are not familiar with
this terminology.

2. Orders and equivalence relations on sets

A relation on a set X is a subset R of the Cartesian product X × X.
R is an equivalence relation if it is reflexive, symmetric and transitive, and
it is a partial order if it is reflexive, anti-symmetric and transitive. These
simple definitions belong to (any) foundations of mathematics course. In this
section we would like to review them from the categorical (and monoidal)
point of view; see [10, Section 2.5].

First fix a singleton set {∗}. Then any set X comes with two unique
mappings:

(a) the diagonal
∆ : X → X ×X , x 7→ (x, x) ,

(b) and the counit
ε : X → {∗} , x 7→ ∗ .

These two maps can be used to explain the meaning of terms such as reflex-
ive, symmetric, antisymmetric or transitive relation. We can think (more
abstractly) about a subset of X×X as a pair R and an injective (one-to-one)
mapping r : R → X ×X. This is how we will understand a relation. The
reflexivity of R means that the image of R under r on X ×X contains all
pairs (x, x). The latter form the image of the diagonal map. Therefore, to
say that the relation (R, r) is reflexive is the same as to say that there is a
mapping δ : X → R such that

∆ = r ◦ δ . (2.1)

If r is understood as the inclusion of the subset R into X × X, then δ is
simply the diagonal map.
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To explain the meaning of symmetry, recall that R is symmetric if when-
ever (x, y) ∈ r(R), then (y, x) ∈ r(R). The swapping of elements in an
ordered pair is encoded in the flip operation

σ : X ×X → X ×X , (x, y) 7→ (y, x) .

Hence, (R, r) is a symmetric relation if there exists a mapping τ : R → R
such that

r ◦ τ = σ ◦ r . (2.2)

The next task is to explain the transitivity. Recall that for this property
we need to consider pairs (x, y) and (y, z), such that the second entry of the
first coincides with the first entry of the second. If (x, y) and (y, z) are in
r(R), then so must be (x, z). To deal with this situation we need to consider
pullbacks. Formally, for any pair of mappings with a common codomain,
f1 : E1 → B, f2 : E2 → B, their pullback is a diagram (i.e. an object
E1 ×B E2 and two morphisms p1, p2 fitting the following diagram)

with the following universal property. For any set F and mappings q1 : F →
E1 and q2 : F → E2 such that f2◦q2 = f1◦q1, there exists a unique mapping
γ : F → E1 ×B E2 such that p2 ◦ γ = q2 and p1 ◦ γ = q1. This situation is
usually summarised by the diagram

Explicitly, for a pair of mappings fi : Ei → B, i = 1, 2,

E1 ×B E2 = {(x, y) ∈ E1 × E2 | f1(x) = f2(y)} .
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The projections p1 and p2 are simply restrictions of the canonical projections
from the Cartesian product to individual sets. We need to stress, however,
that in categories different from the category of sets such an explicit descrip-
tion of a pullback might not be possible.

In the formulation of the transitivity we need to select those pairs of el-
ements of r(R) which have one common element. In other words, if we write

π1 : X×X → X , (x, y) 7→ x , and π2 : X×X → X , (x, y) 7→ y ,

then we need to consider all elements of the pullback R×X R,

If we write r(a) = (a1, a2), r(b) = (b1, b2) ∈ X ×X, then

R×X R = {(a, b) ∈ R×R | a2 = b1} .

When viewed inside X ×X ×X the elements of R×X R are triples (x, y, z)
such that x is in relation R with y and y is in relation R with z. We need
to conclude that the outer elements in the triple are also in relation R. To
pick such elements we define two mappings rL,R : R→ X as the composites

rL : R r−→ X ×X id×ε−→ X , rR : R r−→ X ×X ε×id−→ X . (2.3)

Explicitly, if we write r(a) = (a1, a2) ∈ X×X, then rL(a1, a2) = (a1, ∗) ≡ a1

and rR(a1, a2) = (∗, a2) ≡ a2. When restricted to R ×X R, the Cartesian
product rL × rR must give a pair that belongs to r(R). In summary, we
say that the relation (R, r) is transitive provided there exists a mapping
π : R×X R→ R, such that

rL ×X rR = r ◦ π . (2.4)

A relation on X understood as a pair (R, r) is an equivalence relation if it
satisfies conditions (2.1)–(2.4); see [10, Section 2.5].

Recall that anti-symmetry of relation means that whenever x is in re-
lation R with y and y is in relation R with x, it must be the case that
x = y. Thus, to formulate this condition we need to look at elements of
X ×X which are both in the image of r and σ ◦ r. We would like to express
this property in a way that avoids using elements. This can be done by
formulating conditions in terms of mappings as follows.
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For any set Y consider mappings f, g : Y → R such that

r ◦ f = σ ◦ r ◦ g . (2.5)

We say that (R, r) is an anti-symmetric relation if for any pair of mappings
f, g satisfying equation (2.5),

rL ◦ f = rL ◦ g and rR ◦ f = rR ◦ g , (2.6)

where rL, rR are defined in (2.3). Note that the fact that we consider all pairs
of mappings f, g satisfying equation (2.5) amounts to saying that we consider
all pairs (x, y) ∈ r(R) such that also (y, x) ∈ r(R). A relation (R, r) on X
that is reflexive, anti-symmetric and transitive is called a (partial) order.

This seemingly long-winded way of defining equivalence relations and
orders has a few advantages. First, although we talked about relations on
sets, we formulated all the axioms in terms of objects, morphisms and some
universal constructions. Therefore, this formulation applies to any category
with finite limits. Second, and foremost, it can be translated almost verbatim
to any braided monoidal category.

3. Orders and equivalence relations in monoidal categories

The aim of this section is to transfer the definitions of an equivalence
relation and a partial order to any braided monoidal category. To avoid
clattering the text with abstract (and perhaps not so familiar) notions from
category theory, however, we will present the transferred notions in a par-
ticular case, namely that of vector spaces over a field k, but in a manner
which is applicable to any braided monoidal category (with equalisers). A
reader familiar with category theory can easily re-write presented definitions
in this generality (assuming that the category in which they are stated has
appropriate universal constructions such as equalisers).

3.1. Relations on coalgebras

The category of sets has the Cartesian product ×. This product is asso-
ciative and it has an identity (both properties up to bijections) provided by
a (fixed) singleton set {∗}. That is, for all sets X, X ×{∗} ' {∗}×X ' X.
The elements of a pair (x, y) ∈ X × Y can be flipped to (y, x) ∈ Y × X,
and this defines a bijective mapping σ : X × Y → Y ×X. In the category
of vector spaces there is a tensor product ⊗ which serves as a replacement
for the Cartesian product. The tensor product is associative and it has an
identity k (both up to linear isomorphisms), i.e. for all vector spaces V ,
V ⊗k ' k⊗V ' V by linear isomorphisms. One can also flip tensors by the
linear transformation σ : V ⊗W → W ⊗ V , v ⊗ w 7→ w ⊗ v. The existence
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of tensor products and the flip (or, more generally, braiding) is all that is
needed to define relations in vector spaces. This is essentially a translation
of set theoretic notions based on replacing × by ⊗ and {∗} by k.

We noticed at the beginning of Sec. 2 that any set is a coalgebra through
the diagonal map in a unique way. It is therefore natural to consider coalge-
bras (C,∆C , εC) as replacing sets in the category of vector spaces. Note that
on a given vector space C one can define various comultiplications, hence
we need to specify both ∆C and εC as parts of the initial datum. Again in
sets any function r : R→ X×X can be equivalently described as a function
assigning to R the graph of r, i.e., as

graph(r) : R→ R×X ×X , a 7→ (a, r(a)) .

If X and X × X are understood as coalgebras (in a unique way), then
(R, graph(r)) is a right X × X-comodule (graph(r) is a coaction). Since
the diagonal map is cocommutative it is the same as to say that R is an
X-bicomodule. It seems therefore natural to define a non-commutative or
quantum relation over a coalgebra (C,∆C , εC) as a coalgebra (or a “quantum
set”) (R,∆R, εR) that is a C-bicomodule with a left coaction R% : R→ C⊗R
and a right coaction %R : R → R ⊗ C. There is, however, slightly less
restrictive definition of a quantum relation to which the formulation of orders
and equivalences presented in Sec. 2 can be transferred.

Given a coalgebra and a C-bicomodule R one can define a C-bicomodule
map

r = (id⊗ εR ⊗ id) ◦
(
R%⊗ id

)
◦ %R : R→ C ⊗ C .

Here C ⊗ C is a C-bicomodule by ∆C ⊗ id and id⊗∆C . To define such an
r there is no need to require R be a coalgebra. By relation on a coalgebra
C we will understand a pair (R, r) consisting of a C-bicomodule R and
a C-bicolinear map r : R → C ⊗ C (which might be assumed to be a
monomorphism to make closer connection with the set-theoretic case). The
readers can easily convince themselves that the existence of such an r is
equivalent to the existence of a map κ : R → k: Given r, define κ =
(εC ⊗ εC) ◦ r; given κ, define r = (id⊗ κ⊗ id) ◦ (R%⊗ id) ◦ %R.

We are now (almost) in position to formulate axioms for quantum orders
and equivalences. First, however, we need to look at pullbacks. As already
mentioned in Sec. 2, in the category of sets a pullback of α : E1 → B and
β : E2 → B is a subset of E1 × E2 defined by

E1 ×B E2 = {(x, y) ∈ E1 × E2 | α(x) = β(y)} .

Since all sets are coalgebras, and functions are maps of coalgebras, the set
E1 is a right B-comodule and E2 is a left B-comodule with coactions

λ1 = (idE1 × α) ◦∆E1 : E1 → E1 ×B , x 7→ (x, α(x)) ,
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and
λ2 = (β × idE2) ◦∆E2 : E2 → B × E2 , y 7→ (β(y), y) .

Thus,

E1 ×B E2 = {(x, y) ∈ E1 × E2 | (x, α(x), y) = (x, β(y), y)} = E12BE2 ,

where E12BE2 denotes the equaliser of λ1 × idE2 and idE1 × λ2, i.e., the
cotensor product of comodules. This indicates that pullbacks in a category
of sets (or any category with finite limits) should be translated to coten-
sor products of comodules in a category of vector spaces or any monoidal
category. At this point, we need to assume that the monoidal category in
question has equalisers (and that they are preserved by the tensor product).
This assumption is satisfied for vector spaces.

Let (R, r) be a relation on a coalgebra C. Then:

R1 (R, r) is said to be reflexive if there exists a map δ : C → R such that

∆C = r ◦ δ . (3.1)

.
R2 (R, r) is said to be symmetric if there exists a linear transformation

τ : R→ R such that
r ◦ τ = σ ◦ r . (3.2)

R3 (R, r) is said to be transitive if there exists a linear map π : R2CR→ R,
such that

rL2CrR = r ◦ π , (3.3)

where rL = (id⊗ εC) ◦ r and rR = (εC ⊗ id) ◦ r.

R4 (R, r) is said to be anti-symmetric if, for any pair of linear transforma-
tions f, g : V → R such that r ◦ f = σ ◦ r ◦ g ,

rL ◦ f = rL ◦ g and rR ◦ f = rR ◦ g . (3.4)

As in the case of set-theoretic relations, (R, r) that is reflexive, symmetric
and transitive is called an equivalence relation on the coalgebra C, while
(R, r) that is reflexive, anti-symmetric and transitive is called an order on
the coalgebra C.

We close this section by a few comments on conditions R1–R4. First
observe that applying id ⊗ εC and εC ⊗ id to Eq. (3.1) one obtains that
rL ◦ δ = rR ◦ δ = id. Thus the maps rL, rR associated to a reflexive relation
are necessarily epimorphisms (onto). The above equations mean that they
are retractions (and δ is their common section). Next, applying id ⊗ εC
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and εC ⊗ id to Eq. (3.2) one finds that the map τ connects rL with rR by
rR = rL ◦ τ and rL = rR ◦ τ . Again, the application of id⊗ εC and εC ⊗ id
to the equality r ◦ f = σ ◦ r ◦ g, in R4 yields

rL ◦ f = rR ◦ g and rR ◦ f = rL ◦ g .
Thus, in particular, every relation in which rR = rL is anti-symmetric.

3.2. Quotients by relations

In abstract category theory the process which leads to quotient sets is
encoded in terms of coequalisers. A coequaliser of morphisms q1, q2 : E → D
is an object C together with a morphism χ : D → C that coequalises q1
and q2, that is χ ◦ q1 = χ ◦ q2, and has the following universal property:
For any morphism p : D → B that coequalises q1 and q2, there exists a
unique morphism q : C → B such that p = q ◦ χ. For vector spaces over
k, the coequaliser of linear transformations f, g : V → W is simply the
quotient space W/Im (f −g) (the cokernel of the difference f −g). The map
χ : W →W/Im (f − g) is the canonical surjection.

Let (R, r) be a relation on a coalgebra C. By the quotient C/(R, r) we
mean the coequaliser of maps rR, rL : R → C. This definition is applicable
to any category (it might happen, however, that a given relation does not
produce a quotient). In vector spaces

C/(R, r) = C/Im (rL − rR) .

A reader familiar with coalgebraic techniques will easily find that Im (rL−rR)
is a coideal in C. This means that, for all x ∈ Im (rL − rR), εC(x) = 0 and
∆C(x) ∈ C⊗Im (rL−rR)⊕Im (rL−rR)⊗C. The first statement is obvious as
εC ◦rL = εC ◦rR, a linear map we denoted by κ earlier. To prove the second,
one needs to use the fact that r is a bicomodule map. Therefore, C/(R, r) is a
coalgebra (a “quantum set”) and the canonical projection χ : C → C/(R, r),
c 7→ [c], is a coalgebra map.

It might seem surprising that we define a quotient for any relation not
only for an equivalence relation as practiced for sets. This is with complete
concord with the categorical approach to the quotients. For any relation
(R, r) on a set X one can define maps rL and rR, and calculate their co-
equaliser. As a result, one obtains the quotient of X by the minimal equiv-
alence relation containing r(R).

4. Examples

4.1. Linearised sets

Any set X can be made into a cocommutative coalgebra C over k by
defining C as a vector space with basis X, i.e. C = kX and requesting that
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all elements of X be grouplike, i.e., for all x ∈ X,

∆C(x) = x⊗ x , εC(x) = 1 .

Given a subset S ⊆ X×X, we define a C-bicomodule R to be a vector space
with the basis x⊗ y, for all (x, y) ∈ S and with the left and right coactions

R%(x⊗ y) = x⊗ x⊗ y , %R(x⊗ y) = x⊗ y ⊗ y .

The inclusion S ⊆ X ×X extends linearly to a bicomodule map

r : R→ C , x⊗ y 7→ x⊗ y .

Suppose that S is an equivalence relation. Then S contains all pairs (x, x),
and hence x⊗ x ∈ R, and we can define a map

δ = ∆C : C → R , x 7→ x⊗ x .

Obviously ∆C = r ◦ δ and (R, r) is a reflexive relation on C. Since S is
a symmetric relation on X, (x, y) ∈ S whenever (y, x) ∈ S. Therefore,
v ⊗ w ∈ R if and only if w ⊗ v ∈ R. Thus, τ : R → R can be defined as a
restriction of σ to R, and then σ ◦ r = r ◦ τ , so (R, r) is a symmetric relation
on C. On the basis x ⊗ y, (x, y) ∈ S, of the vector space R, the maps rL
and rR are

rL : x⊗ y 7→ x , rR : x⊗ y 7→ y .

The basis of the cotensor product R2CR is

x⊗ y ⊗ y ⊗ z , (x, y) ∈ S, (y, z) ∈ S .

Since S is transitive, also (x, z) ∈ S, hence there is a bicomodule map

π : R2CR→ R , x⊗ y ⊗ y ⊗ z 7→ x⊗ z ,

and
rL2CrR(x⊗ y ⊗ y ⊗ z) = x⊗ z = r ◦ π(x⊗ y ⊗ y ⊗ z) .

This means that (R, r) is a transitive relation on C. Hence (R, r) is an equiv-
alence relation on the coalgebra C. The quotient C/(R, r) is the coalgebra
spanned by the quotient set X/S, i.e. C/(R, r) = kX/S.

If S ⊆ X × X is an order on X, then corresponding relation R = kS
is a reflexive and transitive relation on C = kX by the same arguments as
before. Since R is a subspace of C⊗C, the anti-symmetry of R is equivalent
to the requirement that, for every element w ∈ R such that σ(w) ∈ R,

rL(w) = rL(σ(w)) , and rR(w) = rR(σ(w)) . (4.1)

By the anti-symmetry of S, an element w ∈ R has the property that σ(w) ∈
R if and only if it is flip-invariant, i.e. w = σ(w). Then, obviously, Eq. (4.1)
are automatically satisfied. Therefore, the linearisation of an order S on X
is an order on the coalgebra kX.
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4.2. The diagonal relation

Let C be a cocommutative coalgebra, and consider the diagonal relation
(C,∆C) on C. The diagonal relation is reflexive (take δ = id) and symmetric
(take τ = id). Both rL and rR are identity maps on C. Since C2CC
is isomorphic with C, with the isomorphism given by ∆C , all elements of
C2CC are of the form ∆C(c). Choosing π as the restriction of id ⊗ εC to
Im (∆C) ' C2CC one immediately sees that the transitivity condition (3.3)
is satisfied. Hence (C,∆C) is an equivalence relation on C.

In the preceding paragraph we assumed that C is a cocommutative coal-
gebra. In fact, one can easily convince oneself that if C is not cocommuta-
tive, then (C,∆C) cannot be an equivalence relation on C: As rL and rR
are identities, the fact that (C,∆C) is symmetric, would imply that τ = id;
see discussion at the end of Sec. 3.1. Hence σ ◦ ∆ = ∆. On the other
hand, even if C is not cocommutative, (C,∆C) is a reflexive and transitive
relation. Since rL = rR, the discussion at the end of Sec. 3.1 affirms that
(C,∆C) is an anti-symmetric relation. Therefore (C,∆C) is an order on any
coalgebra C.

For the diagonal relation (C,∆C), Im (rL−rR)=0, hence C/(C,∆C)'C.

4.3. An example of a non-commutative order

Let C be a three-dimensional coalgebra with basis x, y, z and coproduct
and counit

∆C(x) = x⊗ x , ∆C(y) = x⊗ y + y ⊗ z , ∆C(z) = z ⊗ z ,

εC(x) = εC(z) = 1 , εC(y) = 0 .

Consider a five-dimensional subspace R of C ⊗ C with basis

x⊗ x , z ⊗ z , x⊗ y + y ⊗ z , y ⊗ x , z ⊗ x .

One easily checks that R is a C-bicomodule with left and right coactions
given by the restrictions of ∆C ⊗ id and id⊗∆C , i.e. R is a sub-bicomodule
of C⊗C. Take r to be the inclusion map R ⊂ C⊗C. This defines a relation
on C.

Since Im∆C ⊂ R, the relation (R, r) is reflexive; we need to take δ = ∆C .
To check the transitivity and anti-symmetry we need to calculate maps rL
and rR. The values of these maps on the specified basis of R are recorded
in the following table:

rL rR
x⊗ x x x
z ⊗ z z z

x⊗ y + y ⊗ z y y
y ⊗ x y 0
z ⊗ x z x
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The space R2CR is six-dimensional with a basis:

x⊗ x⊗ x⊗ x , z ⊗ z ⊗ z ⊗ z , y ⊗ x⊗ x⊗ x , z ⊗ z ⊗ z ⊗ x , z ⊗ x⊗ x⊗ x

and
x⊗ x⊗ (x⊗ y + y ⊗ z) + (x⊗ y + y ⊗ z)⊗ z ⊗ z .

Applying rL ⊗ rR to the elements of this basis in each case one obtains an
element of R. Since r is the inclusion, the required map π : R2CR → R is
simply the same as the restriction of rL ⊗ rR to R2CR. Hence (R, r) is a
transitive relation.

All vectors w in R with the property that also σ(w) ∈ R have the form

w = λx⊗ x+ µz ⊗ z , λ, µ ∈ k .

Since σ(w) = w, then obviously rL(w) = rL(σ(w)) and rR(w) = rR(σ(w)),
which implies that the relation (R, r) is anti-symmetric; see Sec. 4.1.

Therefore, (R, r) is an order on the coalgebra C.
By inspecting the table of values of maps rL and rR one finds that

Im (rL − rR) is a subspace of C spanned by y and z − x. The quotient
C/(R, r) is a one-dimensional coalgebra (isomorphic with k) spanned by a
group-like element u. The canonical projection comes out as:

χ : C → C/(R, r) , x 7→ u , y 7→ 0 , z 7→ u .

5. Coalgebraic glossary

A coalgebra is a vector space C over a field k equipped with two linear
transformations

∆C : C → C ⊗ C , εC : C → k ,

known as a comultiplication and a counit, respectively. These are required
to satisfy the following conditions:

(∆C⊗ id)◦∆C = (id⊗∆C)◦∆C , (εC⊗ id)◦∆C = (id⊗εC)◦∆C = id .

A coalgebra is said to be (braided) cocommutative, provided

σ ◦∆C = ∆C ,

were σ is a braiding (a flip operator on vector spaces).
A left C-comodule is a vector space R together with a linear transforma-

tion R% : R → C ⊗ R that satisfies the following coassociative and counital
laws:

(∆C ⊗ id) ◦ R% =
(
id⊗ R%

)
◦ R% , (εC ⊗ id) ◦ R% = id .



Non-commutative Orders. A Preliminary Study 285

A right C-comodule is a vector space R together with a linear trans-
formation %R : R → R ⊗ C that satisfies the following coassociative and
counital laws:(

%R ⊗ id
)
◦ %R = (id⊗∆C) ◦ %R , (id⊗ εC) ◦ %R = id .

A vector space that is both left and right C-comodule is called a
C-bicomodule if the coactions R% and %R satisfy the following compatibility
condition: (

id⊗ %R
)
◦ R% =

(
R%⊗ id

)
◦ %R .

The coalgebra C is itself a C-bicomodule with both coactions being equal
to ∆C .

Given two left C-comodules (R,R%) and (S, S%) a linear transformation
f : R → S is said to be (left) colinear or is called a comodule map if it
commutes with the coactions, that is

S% ◦ f = (id⊗ f) ◦ R% .

A right colinear map is defined in a similar way. In the case of C-bicomodules,
a bicomodule map or a bicolinear map is a linear transformation which is both
left and right colinear.

If (R, %R) is a right C-comodule and (S, S%) is a left C-comodule then
the cotensor product R2CS of R with S is defined as an equaliser of the
maps id⊗ S% , %R ⊗ id : R⊗ S → R⊗ C ⊗ S. That is

R2CS =
{
w ∈ R⊗ S |

(
id⊗ S%

)
(w) =

(
%R ⊗ id

)
(w)

}
⊆ R⊗ S .

If r : R → R′ and s : S → S′ are linear maps then r2Cs denotes the
restriction of r ⊗ s to R2CS.
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