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We discuss two examples of infinite random graphs obtained as limits
of finite statistical mechanical systems: a model of two-dimensional dis-
cretized quantum gravity defined in terms of causal triangulated surfaces,
and the Ising model on generic random trees. For the former model we
describe a relation to the so-called uniform infinite tree and results on the
Hausdorff and spectral dimension of two-dimensional space-time obtained
in B. Durhuus, T. Jonsson, J.F. Wheater, J. Stat. Phys. 139, 859 (2010)
are briefly outlined. For the latter we discuss results on the absence of
spontaneous magnetization and argue that, in the generic case, the values
of the Hausdorff and spectral dimension of the underlying infinite trees are
not influenced by the coupling to an Ising model in a constant magnetic
field (B. Durhuus, G.M. Napolitano, in preparation).
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1. Introduction

Recall that a graph G is specified by its vertex set V (G) and its edge
set E(G). Vertices will be denoted by v or vi etc. An edge is then an
unordered pair (v, v′) of different vertices. Both finite and infinite graphs
will be considered, i.e. V (G) may be finite or infinite, and all graphs will
be assumed to be locally finite, i.e. the number σv of edges containing a
vertex v, called the degree of v, is finite for all v ∈ V (G). By the size of G we
shall mean the number of edges in G and denote it by |G|, i.e. |G| = ]E(G),
where ]M is used to denote the number of elements in a set M .

A path in G is a sequence of different edges (v0, v1), (v1, v2), . . . , (vk−1, vk)
where v0 and vk are called the end vertices. If v0 = vk the path is called a
circuit originating at v0. The graph G is called connected if any two vertices
∗ Presented at the Conference “Geometry and Physics in Cracow”, Poland, September
21–25, 2010.
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v and v′ of G can be connected by a path, i.e. they are end vertices of a
path. The graph distance between v and v′ is then defined as the minimal
number of edges in a path connecting them. A connected graph is called a
tree if it has no circuits.

A planar graph is a graph together with an embedding φ : V (G) → R2

and an association to each edge (v, v′) ∈ E(G) of an arc ψ(v, v′) in R2

connecting φ(v) and φ(v′) such that arcs corresponding to different edges
are disjoint except possibly for endpoints. Two planar graphs are considered
identical if one can be continuously deformed into the other in R2.

A planar tree is a planar connected graph without circuits.
The statistical mechanical models considered in this paper are defined

in terms of planar graphs as follows. Let GN be a subset of the set of planar
graphs of size N , and let us assume that the graphs in GN are rooted, i.e.
they contain a distinguished oriented edge e = (r, r′), called the root edge,
and whose initial vertex r is called the root vertex. To each graph G ∈ GN
we attribute a weight w(G) ≥ 0, and we define a partition function ZN , for
each N ≥ 1, by

ZN =
∑
G∈GN

w(G) . (1)

Here, w(G) may be given in terms of graph data alone or in terms of some
additional data on the graph. In particular, w(G) may be given as the
partition function of a statistical mechanical system on G. In Sec. 3 below
we consider specifically the case, where w(G) is the partition function of an
Ising model on G.

On the basis of (1) a probability distribution µN (G) is defined on GN by
setting

µN (G) = Z−1
N w(G) , G ∈ GN ,

and our goal is to study the limiting distribution for N → ∞. This will
be a probability measure dµ on an appropriate space G∞ of infinite graphs.
In the cases considered below this will be a metric space with the distance
d(G,G′) between two graphs G and G′ being defined by

d
(
G,G′

)
= inf

{
1

R+ 1

∣∣ BR(G) = BR
(
G′
)}

, (2)

where BR(G) denotes the ball in G of radius R and centered at the root r,
i.e. BR(G) is the subgraph of G spanned by the vertices at graph distance
≤ R from r. We then say that µN → µ for N →∞ if∑

G∈GN

f(G)µN (G) N→∞−−−−→
∫
f(G) dµ(G) (3)
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for all bounded continuous functions f on G∞, which are also naturally
defined on

⋃∞
N=1 GN (see e.g. [4]). As will be seen, the limiting distributions

in the cases considered below can be expressed quite explicitly in such a
way that a number of their characteristics, such as the Hausdorff and the
spectral dimension, can be analyzed in some detail.

To conclude this section, let us define these two notions of dimension.

1.1. Hausdorff dimension

Given a connected graph G and R ≥ 0 and v ∈ V (G) we denote by
BR(G, v) the closed ball of radius R centered at v. If G is connected and
the limit

dh = lim
R→∞

ln |BR(G, v)|
lnR

(4)

exists, we call dh the Hausdorff dimension of G. If G is a finite graph we
clearly have dh = 0, a case we leave out of consideration in the following.
It is easily seen that the existence of the limit as well as its value do not
depend on the vertex v.

For an ensemble of graphs (G∞, µ), as described above, we define the
annealed Hausdorff dimension by

d̄h = lim
R→∞

ln 〈 |BR(G)| 〉µ
lnR

, (5)

provided the limit exists, where 〈·〉µ denotes the expectation value w.r.t. µ.
If there exists a subset G0 of G∞ such that µ(G0) = 1 and such that every
G ∈ G0 has Hausdorff dimension dh we say that the Hausdorff dimension of
(G∞, µ) is almost surely dh.

1.2. Spectral dimension

A walk on a graph G is a sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of (not
necessarily different) edges in G. We shall denote such a walk by ω : v0 → vk
and call v0 the origin and vk the end of the walk. Moreover, the number k
of edges in ω will be denoted by |ω|. To each such walk ω we associate a
weight

pG(ω) =
|ω|−1∏
i=0

σ−1
ω(i) ,

where ω(i) is the i-th vertex in ω. Denoting by Πn(G, v0) the set of walks
of length n originating at vertex v0 we have
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∑
ω∈Πn(G,v0)

pG(ω) = 1 ,

i.e. pG defines a probability distribution on Πn(G, v0). We call pG the simple
random walk on G.

For a connected graph G and v ∈ V (G) we denote by pt(G, v) the return
probability of the simple random walk to v at time t, that is

pt(G, v) =
∑
ω:v→v
|ω|=t

pG(ω) .

One can in a standard manner relate this quantity to the discrete heat kernel
on G, but we shall not need this interpretation in the following. If the limit

ds = −2 lim
t→∞

ln pt(G, v)
ln t

(6)

exists, we call ds the spectral dimension ofG. Again in this case, the existence
and value of the limit are independent of v. Moreover, ds = 0 if G is finite
since pt(G, v)→ (]V (G))−1 for t→∞. If G is infinite one has

dh ≥ 1 and ds ≥ 1 .

If G is the hyper-cubic lattice Zd it is clear that dh = d and by Fourier
analysis it is straight-forward to see that also ds = d. However, examples of
graphs with dh 6= ds are abundant, see e.g. [9].

The annealed spectral dimension of an ensemble (G∞, µ) of rooted graphs
is defined as

d̄s = −2 lim
t→∞

ln 〈 pt(G, r) 〉µ
ln t

(7)

provided the limit exists. As above, we say that the spectral dimension
of (G∞, µ) is almost surely ds, if the set of graphs with spectral dimension
different from ds has vanishing µ-measure.

2. The uniform infinite causal triangulation

The so-called uniform infinite planar tree is obtained by letting GN ≡ TN
be the set of planar rooted trees with N edges and root r of order 1, and
setting w(T ) = 1 for T ∈ TN . The existence of the limiting distribution ν was
demonstrated in [8]. An important feature of ν is that it is concentrated on
trees with a single infinite path starting at r, called the spine, and attached
to each spine vertex ui, i = 1, 2, . . . , is a finite number ni of finite trees,
called branches as illustrated in Fig. 1.
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Fig. 1. Example of an infinite tree, consisting of a spine and left and right branches.

The individual branches T are independently distributed according to

ρ(T ) =
∏
v∈T\r

2−σv , (8)

where the product is over vertices in T except the root (which is identical
to the vertex on the spine at which T is attached). Moreover, the orders
ni+2 of spine vertices ui, i ≥ 1, are also independent random variables with
probability distribution

pn =
∑

k′+k′′=n
k′,k′′≥0

pk′,k′′ = 2−(n+1) , (9)

where
pk′,k′′ = 2−(k′+k′′+2) (10)

is the probability of having k′ left branches and k′′ right branches (as seen
from the root r) attached at ui.

Properties of the uniform infinite tree and, more generally, of so-called
generic trees, were analyzed in [10]. In particular, it was found that d̄h = 2
and d̄s = 4

3 . We shall not discuss these cases further in this article.
In the remainder of this section, we give a brief description of some results

from [11], where the uniform infinite tree is exploited in the context of the
causal dynamical triangulation (CDT) model of quantum gravity originally
proposed in [2]. In order to define this model, we let GN ≡ CN denote the
set of sliced triangulations of the disc with N vertices. Here, a triangulation
S of the disc is said to be sliced if the subgraph of S spanned by vertices at
distance n and n + 1 from the root r, n = 1, . . . ,M , is an annulus Sn such
that every triangle in Sn has all vertices in the boundary and not all in the
same boundary component of Sn. For n = 0 we require that B1(S) is a disc
(see Fig. 2). Moreover, M denotes the maximal distance of vertices in S
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Fig. 2. A sliced triangulation S of the disc with circles containing vertices at dis-
tance 1, 2 and 3 from the root. Here S consists of two annuli S1, S2 and the disc
B1(S). The bold edge indicates the root edge.

from r. In particular, if the boundary components of Sn contain ln and ln+1

edges, respectively, then the total number of vertices, edges and triangles
in S are

|V (S)| = 1 +
M∑
n=1

ln , |E(S)| = 3
M∑
n=1

ln − lM , |S| = 2
M∑
n=1

ln − lM , (11)

respectively. Here we have assumed M < ∞. However, the definition of
a sliced surface is also valid for infinite triangulations of the plane, corre-
sponding to M =∞.

We then define µN to be the uniform distribution on CN , i.e. we set
w(S) = 1 for S ∈ CN . Thus, in this case

ZN = ]CN . (12)

We claim that
]CN = ]TN . (13)

To see this, pick an orientation of the plane and consider S ∈ CN . For any
vertex v at distance n ≥ 1 from r, order the edges in Sn \∂Sn emerging from
v from left to right in accordance with the orientation of the plane. Next,
delete from S all edges in

⋃M
n=1 ∂Sn as well as the rightmost edge emerging

from v into Sn for each v as above. Finally, attach a new edge (r0, r) to
the root vertex r. Then, the resulting graph is a tree β(S) with a unique
embedding into the plane such that the root edge (r, r′) in S becomes the
rightmost edge emerging from r in β(S) (see Fig. 3).
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Fig. 3. The dashed lines indicate the edges of the tree β(S) constructed from the
triangulation in Fig. 2.

It is a fact, as the reader may easily verify, that β : CN → TN is a
bijection which proves (13). In fact, β is a particular case of the so-called
Schaeffer bijection applicable for labeled trees [17].

It is easy to check that β extends to the case M = ∞ corresponding to
infinite sliced triangulations:

β : C∞ → T∞ .

Taking this fact into account the following result is an immediate conse-
quence of [8].

Theorem 2.1. The distributions (µN ) defined by

µN (S) = (]CN )−1 , S ∈ CN ,

converge to a probability distribution µ on C∞, which is given by

µ(A) = ν(β(A))

for measurable sets A ⊆ C∞, where ν denotes the distribution of the uniform
infinite tree.

We call the ensemble (C∞, µ) the uniform infinite causal triangulation
(UICT) [11,14].

Except for the root r0 ∈ β(S), the vertices in S and β(S) are the same
and β preserves the distance from r to v ∈ S. It follows that the Hausdorff
dimensions of the two ensembles (T∞, ν) and (C∞, µ) are identical.
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Theorem 2.2. For the uniform infinite causal triangulation we have

d̄h = 2

and
dh = 2 a.s.

Proof. That d̄h = 2 follows from the remarks above and [8], while the second
statement follows from the corresponding result for generic trees established
in [11].

Obviously, there is no canonical bijective correspondence between walks
in S and in β(S) and hence results on the spectral dimension for the uniform
tree cannot be carried over to the UICT. A result by Benjamini and Schramm
[3] states that under rather general circumstances a planar random graph is
recurrent, which means that the simple random walk starting at r will return
to r with probability 1. It is well known that this is the case if and only if
ds ≤ 2. Since the result of [3] presupposes a fixed upper bound on vertex
degrees for the graphs in question it cannot be applied to the UICT. However,
it was shown in [11], by combining the so-called Nash-Williams criterion for
recurrency of graphs [16] with the known structure of the distribution ν
described above, that the UICT is recurrent with probability 1. Thus we
have

Theorem 2.3. For the UICT the spectral dimension fulfills ds ≤ 2 almost
surely.

It is generally believed that ds = 2 almost surely. A proof of this is still
missing. To our knowledge the best known lower bound is

ds ≥
4
3

a.s.

which is obtained by applying the inequality [5]

ds ≥
dh

dh + 1

to the present situation using Theorem 2.2.
This finishes our discussion of the UICT. For more details the reader

should consult [11].
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3. The Ising model on a generic infinite tree

In this section, we consider an interacting spin system (Ising model) on
an infinite generic tree.

Ising models on tree graphs have been considered previously by several
authors. The most well known example is perhaps the Ising model on a
Cayley tree [7]. This model is exactly solvable and was shown to exhibit
spontaneous magnetization of a fixed central spin in [6], see also [15].

A grand canonical ensemble of Ising models on finite trees was consid-
ered in [1], where it was argued that the model has no spontaneous mean
magnetization.

Our model may be considered as a thermodynamic limit of the model
of [1], in the sense that trees have infinite size. To be specific we give a
description of measures on the set of spin configurations on infinite trees,
obtained as limits of Ising models on finite trees. This allows a detailed
study of the magnetization properties of the system and of the Hausdorff
and spectral dimension.

Here we give an overview of the main results and outline some of the
arguments leading to them. For details we refer the reader to [12].

3.1. The partition functions

Let ΛN be the set of planar rooted trees of size N decorated with Ising
spin configurations,

ΛN =
{
τs = (τ, s)

∣∣ τ ∈ TN , s ∈ Sτ} , (14)

where Sτ = {±1}V (τ). Decomposing Sτ into S±τ = {s ∈ Sτ
∣∣ s(r) = ±1},

we have corresponding decompositions

ΛN = ΛN+ ∪ ΛN−

and

Λ =

( ∞⋃
N=1

ΛN

)
∪ Λ∞ = Λ+ ∪ Λ− .

Let ZN be the partition function of the Ising model on trees in TN
given by

ZN (β, h) =
∑
τ∈TN

Z(β, h, τ)ρ(τ) , (15)

Z(β, h, τ) =
∑
s∈Sτ

e−Hτ (s) , (16)
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with
Hτ (s) = −β

∑
〈ij〉∈τ

sisj − h
∑
i∈τ\r

si ,

where the notation
∑
〈ij〉∈τ

is used for the sum over pairs of neighbouring spins,

and
ρ(τ) =

∏
v∈τ\r

pσv−1 . (17)

Here, (pn)n≥0 is a sequence of non-negative numbers such that p0 6= 0 and
pn > 0 for some n ≥ 2.

For the generating function

Z(β, h, g) =
∞∑
N=1

ZN (β, h) gN

we then have
Z(β, h, g) = Z+(β, h, g) + Z−(β, h, g) ,

where the generating functions Z±(β, h, g) are defined by restricting the sum
in (16) to S±τ .

Setting

ϕ(z) =
∞∑
n=0

pnz
n , (18)

the functions Z± are determined by{
Z+ = g(aϕ(Z+) + a−1 ϕ(Z−)) ,
Z− = g(b ϕ(Z+) + b−1 ϕ(Z−)) ,

(19)

where
a = eβ+h , b = e−β+h . (20)

Indeed, let R denote the radius of convergence of (18) and define F : {|z| <
R}2 × C→ C2 by

F (Z+, Z−, g) = g

(
aϕ(Z+) + a−1 ϕ(Z−)
b ϕ(Z+) + b−1 ϕ(Z−)

)
≡ g Φ(Z+, Z−) . (21)

Assuming R > 0, we have

∂F

∂Z
= g

∂Φ

∂Z
= g

(
aϕ′(Z+) a−1 ϕ′(Z−)
b ϕ′(Z+) b−1 ϕ′(Z−)

)
,
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and in particular, F (0, 0, 0) = 0 and ∂F
∂Z (0, 0, 0) = 0. The holomorphic

implicit function theorem (see e.g. [13], Appendix B.5 and references therein)
implies that the fixpoint equation (19) has a unique holomorphic solution
Z±(g) in a neighborhood of g = 0. Let g0 be the radius of convergence of the
Taylor series of Z+(g). Since the Taylor coefficients of Z+ are non-negative,
g0 is the singularity of Z+ closest to 0. Setting

Z+(g0) = lim
g↗g0

Z+(g)

it is easy to see that Z+(g0) < +∞ and that g0 <∞ also equals the radius
of convergence for the Taylor series of Z−(g).

In the following, we make the genericity assumption

Z±(g0) < R . (22)

It should be noted that, for h = 0, the value of Z+(g0) = Z−(g0) is inde-
pendent of β and (22) reduces to the genericity assumption of [10] for the
underlying random tree.

Assuming (22), the implicit function theorem gives

det
(
1− g0 Φ

′
0

)
= 0 , (23)

where

Φ′0 = Φ′
(
Z0

+, Z
0
−
)

=
(
aϕ′

(
Z0

+

)
a−1 ϕ′

(
Z0
−
)

b ϕ′
(
Z0

+

)
b−1 ϕ′

(
Z0
−
)) ,

with Z0
± = Z±(g0). From the expansion of (19) around Z0

± we get

(
1− g0 Φ

′
0

)(∆Z+

∆Z−

)
= ∆g Φ0 +

g

2
∆Z Φ′′0 ∆Z +O

(
∆Z3,∆g∆Z

)
, (24)

where ∆Z± = Z± − Z0
± ,∆g = g − g0. By (23), we have(

c1 c2

) (
1− g0 Φ

′
0

)
= 0 ,

where
c1 = g0 b ϕ

′ (Z0
+

)
, c2 = 1− g0 aϕ

′ (Z0
+

)
. (25)

Together with the first equation in (19), this gives

(∆Z±)2 = −K±∆g + o(∆g) , (26)

where the constants K± (depending only on β and h) are given by

K+ = α2 2
g0

αaϕ
(
Z0

+

)
+ b−1 ϕ

(
Z0
−
)

α3 aϕ′′
(
Z0

+

)
+ b−1 ϕ′′

(
Z0
−
) (27)
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and

K− =
2
g0

αaϕ
(
Z0

+

)
+ b−1 ϕ

(
Z0
−
)

α3 aϕ′′
(
Z0

+

)
+ b−1 ϕ′′

(
Z0
−
) , (28)

where

α =
g0 a

−1 ϕ′
(
Z0
−
)

1− a g0 ϕ′(Z0
+)

.

This proves that Z±(g) has a square root branch point at g = g0 in the
disc {g

∣∣ |g| ≤ g0}. Making further use of the implicit function theorem
it can be shown that Z±(g) have extensions to a so-called ∆-domain, as
described by the following proposition.

Proposition 3.1. Suppose the greatest common divisor of {n
∣∣ pn > 0} is

1. Then the functions Z±(g) can be analytically extended to a domain

Dε,ϑ = {|z| < g0 + ε, z 6= g0, | arg(z − g0)| > ϑ} (29)

and (26) holds in Dε,ϑ, for some ε, ϑ > 0.

This result allows us to use a standard transfer theorem [13] to determine
the asymptotic behaviour of ZN±(β, h) for N →∞. We state it as follows.

Corollary 3.2. We have

ZN±(β, h) =
1
2

√
g0K±
π

g−N0 N−3/2(1 + o(1)) (30)

for N →∞, where g0, K± > 0 are determined by (19), (23), (27) and (28).

3.2. The measure on the set of infinite trees

For 1 ≤ N < ∞ and fixed β, h ∈ R we define the probability measures
µN , µN± on ΛN , ΛN± ⊂ Λ by

µN (τs) = ZN (β, h)−1e
β

P
〈ij〉

sisj+h
P

i∈V (τ)\r
si

ρ(τ) , (31)

µN±(τs) = ZN±(β, h)−1e
β

P
〈ij〉

sisj+h
P

i∈V (τ)\r
si

ρ(τ) , (32)

such that
µN =

ZN+

ZN
µN+ +

ZN−
ZN

µN− .

Here, ρ(τ) is given by (17).
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As a generalization of (2) we introduce on Λ the metric d by

d
(
τs, τ

′
s′
)

= inf
{

1
R+ 1

∣∣ BR(τ) = BR(τ ′), s|BR(τ) = s′|BR(τ ′), R ≥ 0
}
.

(33)
Then (Λ, d) is a separable metric space. Using a general argument concerning
weak convergence of probability measures on metric spaces (see e.g. [4]),
together with some combinatorics, one can prove the following result.

Theorem 3.3. Assume (22) holds and that the greatest common divisor of
{n
∣∣ pn > 0} is 1. Then, for all (β, h) ∈ R2, the limits

µ± = lim
N→∞

µN± and µ = lim
N→∞

µN (34)

exist as probability measures on Λ and

µ =
√
K+√

K+ +
√
K−

µ+ +
√
K−√

K+ +
√
K−

µ− . (35)

In particular, introducing the notation

A(τ0, s0) = {τs
∣∣ BR(τ) = τ0, s|τ0 = s0} ,

where τ0 is a finite tree of height R with spin configuration s0, we find that
the volume of this set is given by

µ±(A(τ0, s0)) =
g
|τ0|
0√
K±

e−Hτ0 (s0)
M∑
i=1

√
Ks0(vi)ϕ

′
(
Z0
s0(vi)

)∏
j 6=i

ϕ
(
Z0
s0(vj)

)
if s0(r) = ±1 and where v1, . . . , vM are the vertices at maximal distance
from the root in τ0.

The following corollary provides a complete description of the limiting
measures µ±.

Corollary 3.4. The measures µ± are concentrated on the sets

Λ̄± = {τs ∈ Λ±
∣∣ τ has a single spine} ,

respectively, and can be described as follows:

1. The probability that the spine vertices u0 = r, u1, u2, . . . , uN have
k′1, . . . , k

′
N left branches and k′′1 , . . . , k

′′
N right branches and spin val-

ues s0 = ±1, s1, s2, . . . , sN , respectively, equals

ρ±
k′1,...,k

′
N ,k
′′
1 ,...,k

′′
N

(s0, . . . , sN )

= gN0 e
β
NP
i=1

si−isi+h
NP
i=1

si

(
N∏
i=1

(
Z0
si

)k′i+k′′i pk′i+k′′i +1

)√
KsN

K±
. (36)
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2. The conditional probability distribution νsi of any finite branch τs at a
fixed ui, 1 ≤ i ≤ N , given k′1, . . . , k

′
N , k

′′
1 , . . . , k

′′
N ,s0, . . . , sN as above,

is given by

νsi(τs) =
(
Z0
si

)−1
g
|τ |
0 e−Hτ (s)

∏
v∈τ\ui

pσv−1 (37)

for s(ui) = si, and 0 otherwise.

3. The conditional distribution of the infinite branch at uN , given k1, . . . ,
kN , k′′1 , . . . , k

′′
N , s0, . . . , sN , equals µsN .

3.3. Absence of spontaneous magnetization

Write µ(β,h)
± , µ(β,h) for µ±, µ and K±(β, h) for K±.

Theorem 3.5. Under the assumptions of Theorem 3.3 the probability

µ(β,h)({s0 = +1}) =

√
K+(β, h)√

K+(β, h) +
√
K−(β, h)

(38)

is a smooth function of β, h. In particular, there is no spontaneous magne-
tization in the sense that

lim
h→0

µ(β,h)({s0 = +1}) = 1
2 . (39)

Sketch of proof. The identity (38) follows from (35).
From Eqs. (27) and (28) it follows that it is sufficient to show that Z0

± are
smooth functions of β, h. This can be established by analyzing the system
of equations {(

Z0
+, Z

0
−
)

= g0 Φ
(
Z0

+, Z
0
−
)
,

det
(
1− g0Φ

′ (Z0
+, Z

0
−
))

= 0
(40)

determining (Z0
+, Z

0
−, g0) implicitly as functions of (β, h).

To verify (39) first note that for h = 0 we have Z0
+ = Z0

− and a = b−1.
Hence, from Eq. (23) one finds α = 1 and K+ = K−. Then continuity of
(38) obviously implies (39).

More generally, from (36) it is seen that the distribution of spin variables
s0, . . . , sN on the spine can be rewritten as

ρ(s0, . . . , sN ) = e
β
NP
i=1

si−1si+h
′
NP
i=1

si (
g2

0 ϕ
′ (Z0

+

)
ϕ′
(
Z0
−
))N/2 √

KsN√
K+ +

√
K−

,
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where

h′ = h+ 1
2 ln

ϕ′
(
Z0

+

)
ϕ′
(
Z0
−
) .

Since ρ(s0, . . . , sN ) is normalized, this shows that the expectation value of
a function f(s0, . . . , sN−1) w.r.t. µ equals that of the Ising model on [0, N ]
with Hamiltonian

HN (s0, . . . , sN ) = −β
N∑
i=1

si−1si − h′
N∑
i=1

si −
(

1
2 lnα

)
sN . (41)

Letting N →∞ we conclude that µ restricted to functions of the spin vari-
ables on the spine equals the Ising model on N0 = {0, 1, 2, . . . } at inverse
temperature β and magnetic field h′. In particular, the mean magnetiza-
tion vanishes as h → 0 since h′ is a smooth function of h by the proof of
Theorem 3.5 (see [12]) and since h′ = 0 for h = 0

lim
h→0

lim
N→∞

〈
s0 + · · ·+ sN−1

N

〉
µβ,h

= 0 .

For the mean magnetization on the full infinite tree we have the following
result, which requires some additional estimates in combination with Theo-
rem 3.5. First define the mean magnetization in the ball of radius R around
the root by

MR(β, h) = 〈|BR(τ)|〉−1
µβ,h

〈 ∑
v∈BR(τ)

sv

〉
µβ,h

and set
M(β, h) = lim sup

R→∞
MR(β, h) .

Then the following holds true.

Theorem 3.6. Under the assumptions of Theorem 3.3 the mean magneti-
zation vanishes for h→ 0, i.e.

lim
h→0

M(β, h) = 0 , β ∈ R .

3.4. Hausdorff and spectral dimension

Next, we give an account of some results on the Hausdorff and spectral
dimensions of the ensemble of trees (T , µ̄) determined by (Λ, µ), where

µ̄(A) = µ({τs
∣∣ τ ∈ A})

for A ⊆ T measurable. Note that the mapping τs → τ from Λ̄ to T is a
contraction w.r.t. the metrics (33) and (2).
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The following result is surprisingly easy to establish.

Theorem 3.7. Under the assumptions of Theorem 3.3 the annealed Haus-
dorff dimension of µ̄ is 2 for all β, h:

d̄h = lim
R→∞

ln 〈|BR|〉µ
lnR

= 2 .

Proof. Consider the probability distribution ν± on {τs
∣∣ τ is finite} given by

(37) and denote by DR(τ) the number of vertices at distance R from the
root in τ . Setting

f±R = 〈DR〉ν± Z
0
±

one finds that{
f+
R = g0

(
aϕ′

(
Z0

+

)
f+
R−1 + a−1 ϕ′

(
Z0
−
)
f−R−1

)
,

f−R = g0

(
b ϕ′

(
Z0

+

)
f+
R−1 + b−1 ϕ′

(
Z0
−
)
f−R−1

)
.

In particular,

fR ≡ c1 f
+
R + c2 f

−
R = fR−1 = · · · = f1 = c1 Z

0
+ + c2 Z

0
− ,

where c is given by (25), and we conclude that

d1 ≤ f±R ≤ d2 , R ≥ 1 ,

where d1, d2 are positive constants (depending on β, h). Using this result
and (36) we obtain

d1R ≤ 〈|BR|〉ν± ≤ d2R

and
1
2 d1R

2 ≤ 〈|BR|〉µ ≤
1
2 d2R

2 .

A more elaborate argument using ideas from [10] is required to prove the
following result for the annealed spectral dimension (see [12]).

Theorem 3.8. Under the assumptions of Theorem 3.3 the annealed spectral
dimension of (T , µ̄) is

d̄s = 4
3 .
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4. Conclusions

We have in this article considered two models of random graphs: a model
of triangulated sliced planar surfaces and the Ising model in a constant
magnetic field on planar random trees. For the former model the spectral
dimension is shown to be at most 2. A goal of future work is to obtain
effective lower bounds on the spectral dimension for this model as well as
for more general models of planar random surfaces.

For the second model we have considered the generic case characterized
by the condition (22), for which we have shown, in particular, the absence
of spontaneous magnetization. This should be compared with the result
of [14] that the Ising model on the UICT exhibits a phase transition. It is
an interesting topic for future work to investigate models possessing critical
points (β, h) at which the genericity condition (22) is violated and to study
features of the corresponding transition.

This work is supported by the Danish National Research Foundation
(DNRF) through the Centre for Symmetry and Deformation and by the
Danish Agency for Science, Technology and Innovation through the Geome-
try and Mathematical Physics School (GEOMAPS). One of us (B.D.) thanks
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