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The aim of the paper is to answer the following question: does κ-defor-
mation fit into the framework of noncommutative geometry in the sense of
spectral triples? Using a compactification of time, we get a discrete version
of κ-Minkowski deformation via C∗-algebras of groups. The dynamical
system of the underlying groups (including some Baumslag–Solitar groups)
is used in order to construct finitely summable spectral triples. This allows
to bypass an obstruction to finite-summability appearing when using the
common regular representation.
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1. Introduction

Lukierski, Ruegg, Nowicki and Tolstoy discovered a Hopf algebraic de-
formation of the Poincaré Lie algebra and called κ the deformation pa-
rameter (Lukierski, Ruegg, Nowicki 1991; Lukierski, Nowicki, Ruegg 1992).
Since this pioneering work, the subject became very active: the Hopf alge-
bra was represented on the κ-deformation of Minkowski space (Zakrzewski
1994; Majid, Ruegg 1994). This has been used to generalize the notion
of a quantum particle (Lukierski, Ruegg, Zakrzewski 1995) or in quantum
fields (Daszkiewicz, Lukierski, Woronowicz 2009). Algebraic properties like
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differential calculi on the κ-Minkowski space were investigated (Sitarz 1995)
as well as the Noether theorem (Amelino-Camelia, Marciano, Pranzetti
2009; Amelino-Camelia et al. 2009; Amelino-Camelia et al. 2007). The
κ-Minkowski space has also been popularized as ‘double special relativ-
ity’ (Amelino-Camelia 2002) and appears in spin foam models (Freidel,
Livine 2006).

It is natural to ask whether κ-geometry is a noncommutative one in the
sense of Connes (Connes 1996; Connes 2008) (see (D’Andrea 2006) for a first
attempt). While the algebraic setting is quite clear, the main difficulty is to
overcome the analysis which is an essential part in the definition of spectral
triples.

The κ-deformation of n-dimensional Minkowski space is based on the
Lie-algebraic relations[

x0, xj
]

:= i
κ x

j ,
[
xj , xk

]
= 0 , j, k = 1, . . . , n− 1 . (1)

Here, we assume κ > 0. As in (Kosiński, Maślanka, Lukierski, Sitarz 1998,
Eq. (2.6)), one gets

eicµx
µ

= eic0x
0
eic
′
j x

j

, where c′j := κ
c0

(
1− e−c0/κ

)
cj .

Assuming that the xµs are selfadjoint operators on some Hilbert space, we
define unitaries

Uω := eiωx
0

and V~k := e−i
Pn−1
j=1 kjx

j

with ω, kj ∈ R, which generate the κ-Minkowski group considered in (Agos-
tini 2007).

If W (~k, ω) := V~k Uω, one gets as in (Agostini 2007, Eq. (13))

W
(
~k, ω

)
W
(
~k′, ω′

)
= W

(
e−ω/κ~k′ + ~k, ω + ω′

)
. (2)

The group law (2) is, for n = 2, nothing else but the crossed product

Gκ := R oα R with group isomorphism α(ω)k := e−ω/κk , k ∈ R . (3)

Note that Gκ ' R o R∗+ is the affine group on the real line which is solvable
and nonunimodular. The irreducible unitary representations are either one-
dimensional, or fall into two nonequivalent classes (Agostini 2007). When
κ → ∞, the usual plane R2 is recovered but with an unpleasant pathology
at the origin (Dąbrowski, Piacitelli 2009).
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For a given ω, a particular case occurs when m := e−ω/κ ∈ N∗, since

UωV~k =
(
V~k
)m

Uω , (4)

m being independent of kj . This means that for chosen ω and kj , the
presentation of the group is given by two generators and one relation.

Here, we investigate different spectral triples (A,H,D) associated to the
group C∗-algebra of Gκ. To avoid technicalities due to a continuous spec-
trum of D, we want a unital algebra so that we consider a periodic time
x0 which induces a discrete version Ga of Gκ where a is a real parameter
depending on κ. This is done in Sec. 2.

In Sec. 3, we give the main properties of the algebra Ua = C∗(Ga) and its
representations. For C∗-algebras of groups, the left regular representation is
the natural one to consider. But due to the structure of Ga (solvable with
exponential growth, see Theorem 3.2), there is a known obstruction to con-
struct finite-summable spectral triples on Ua based on this representation. In
order to bypass this obstruction, we need to refine our understanding of the
structure of Ga in terms of an underlying dynamical system. This structure
permits to define a particular representation of Ua using only the periodic
points of the dynamical system. Following Brenken and Jørgensen (Brenken,
Jørgensen 1991), the topological entropy of this dynamics is considered.

It is worthwhile to notice that the elementary building blocks Ga given
by a = m ∈ N∗ as in (4) are some of the amenable Baumslag–Solitar groups,
already encountered in wavelet theory (Jørgensen 2001). The power of har-
monic analysis on groups also justifies a reminder of their main properties
in Sec. 4.

The question of the finite summability of these triples is carefully consid-
ered with results by Connes (Connes 1989) and Voiculescu (Voiculescu 1979;
Voiculescu 1990): using the regular representation of C∗(Ga), an obstruc-
tion to finite-summability appears and allows only θ-summability. However,
faithful representations of C∗(Ga), not quasi-equivalent to the left regular
one and based on the existence of periodic points for dynamical systems,
can give rise to arbitrary finite-summable spectral triples. These results are
summarized in Theorems 5.2 and 5.3.

All proofs will appear elsewhere.

2. Motivations and models

Let us consider the example given by (1) for two hermitian generators
x0 and x1. For any (k, ω) ∈ R2, one defines W (k, ω) := Vk Uω = e−ikx

1
eiωx

0 .
Then one has (2) which is a representation of the group Gκ defined in (3).
The bounded operators W (f) :=

∫
Gκ
f(k, ω)W (k, ω) eω/κ dk dω for any f ∈

L1(Gκ, eω/κ dk dω) (here eω/κdk dω is the left Haar measure on Gκ) generate
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a representation of C∗red(Gκ). The product of f, g ∈ L1(Gκ, eω/κ dk dω) takes
the form (f ∗κ g)(k, ω) =

∫
Gκ
f(k′, ω′)g(eω

′/κ(k − k′), ω − ω′) eω′/κ dk′ dω′.
The advantage of considering the theory of group C∗-algebras is twofold.
Many structural properties on groups will turn out to be useful in studying
some properties of the corresponding C∗-algebras. Moreover, this allows us
to construct in a natural way compact versions of noncommutative spaces
as we now explain.

For an Abelian topological group G, C∗red(G) is isomorphic to C0(Ĝ),
where Ĝ is the Pontryagin dual of G. Both algebras are defined as spaces of
functions. By duality, a discrete subgroup Γ ⊂ G produces the C∗-algebra
C∗red(Γ ) ' C(Γ̂ ), where C(Γ̂ ) is the C∗-algebra of continuous functions on
the compact space Γ̂ . Notice that there is a natural dual map Ĝ → Γ̂ .
For the example of the plane, consider the discrete subgroup Γ = Z2 ⊂ R2.
Then the resulting C∗-algebra is C∗(Z2) ' C(T2) because Ẑ = T1. The
dual map R ' R̂ → Ẑ = T1 is explicitly given by x 7→ e2πix. The choice of
the subgroup Γ = Z2 ⊂ R2 corresponds then to the choice of the compact
version T2 of the (dual) space R̂2 ' R2. The compactification takes place in
the space of the variables (x, y).

In order to get a compact version of this κ-deformed Minkowski space,
one has to choose a discrete subgroup Hκ ⊂ Gκ. Since Hκ is discrete and
non-Abelian, the associated algebra C∗(Hκ) is unital and noncommutative,
so it can be interpreted as a compact noncommutative space. This point is
motivated in Sec. 2.1 and is done in Sec. 2.2.

As a final preliminary remark, let us mention that the groups we will en-
counter will be decomposed as crossed products with Z, so both the (related)
theories of discrete dynamical systems and crossed products of C∗-algebras
will be intensively used in many parts of this work.

2.1. Spectral triples

The goal is to study the existence of spectral triples for the κ-deformed
space. A spectral triple (or unbounded Fredholm module) (A,H,D) (Connes
1995; Connes 1996; Connes, Marcolli 2008) is given by a unital C∗-algebra
A with a faithful representation π on a Hilbert space H and an unbounded
self-adjoint operator D on H such that

— the set A = { a ∈ A : [D, π(a)] is bounded } is norm dense in A,

— (1 +D2)−1 has a compact resolvent.

(A is always a ∗-subalgebra of A.)
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Of course, the natural choice of the algebra A is to take the C∗-algebra
of the group Gκ, but since A = C∗(Gκ) has no unit, we need to replace the
second axiom by:

— π(a)(1 +D2)−1 has a compact resolvent for any a ∈ A.

This technical new axiom generates a lot of analytical complexities but
is necessary to capture the metric dimension associated to D. For instance,
if a Riemannian spin manifold M is non-compact, the usual Dirac operator
D has a continuous spectrum on H = L2(S), where S is the spinor bundle
on M . Nevertheless, the spectral triple

(
C∞(M), L2(S),D

)
has a metric di-

mension which is equal to the dimension of M . A noncommutative example
(the Moyal plane) of that kind has been studied in (Gayral et al. 2004).

We try to avoid these difficulties here by using a unital algebra A.

2.2. The compact version model as choice of a discrete subgroup

We consider only dimension n = 2 but the results can be extended to
higher dimensions thanks to (4). To get a unit, we choose a discrete subgroup
Hκ of Gκ such that 1 ∈ C∗(Hκ).

Since we want also to keep separate the role of the variables x0 and x1,
we consider the subgroup of the form Hκ = H oα Z: we first replace the
second R of Gκ in (3) by the lattice Z which corresponds to unitary periodic
functions of a chosen frequency ω0 (the time x0 is now periodic). So, given
κ > 0 and ω0 ∈ R, with

a := e−ω0/κ ∈ R+ , (5)

the group R oαa Z is a subgroup of Gκ, where αa(n) is the multiplication
by an. This subgroup is a non-discrete “ax+ b” group.

Then, we want a group H to be a discrete (now, not necessarily topolog-
ical) subgroup of the first R in R oαa Z, which is invariant by the action αa.
Given k0 ∈ R, a natural building block candidate for a discrete H is given
by H = Ba · k0 ' Ba, where

Ba :=

 ∑
i, finite

mi a
ni : mi, ni ∈ Z

 ,

and more generally, one can take H ' ⊕k0 Ba.
The search for a discrete subgroup Hκ of Gκ such that 1 ∈ C∗(Hκ) leads

to Hκ,a := Ba oαa Z which is isomorphic to a subgroup of Gκ once k0 is
fixed.
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This procedure drives us to the analysis of the algebraic nature of a. For
instance, when a = m ∈ N∗ is an integer, this group Hκ,m is well known
since it is the solvable Baumslag–Solitar group BS(1,m) = Z[ 1

m ] oαm Z as
shown in Sec. 4, where we get Bm = B1/m = Z[1/m]. A broad family of
noncommutative spaces appears:

Lemma 2.1. In two dimensions, there exists a unital subalgebra C∗(Hκ,m)
of the κ-deformation algebra, associated to the subgroup Hκ,m = Z[ 1

m ]oαm Z
of Gκ,m and which can be seen as generated by two unitaries U, V such that
U = Uω0 , V = Vk0 and UV = V mU . Here, κ := −ω0 log−1(m) > 0 for
some given integer m > 1 and some ω0 ∈ R−, k0 ∈ R.

3. The algebra Ua and its representations

We now compute the C∗-algebra Ua which is our model for a compact
version of the 2-dimensional κ-Minkowski space. The structure of this alge-
bra is described through a semi-direct product of two Abelian groups, one
of which depends explicitly on the real parameter a > 0. This semi-direct
structure gives rise to a dynamical system which is heavily used in the fol-
lowing. The classification of the algebras Ua is performed: the K-groups are
not complete invariants, and we use the entropy defined on the underlying
dynamical system to complete this classification. Then some representations
of Ua are considered. They strongly depend on the algebraic or transcenden-
tal character of a. In the algebraic case, some particular finite dimensional
representations are introduced based on periodic points of the dynamical
system. This construction will be used in Sec. 5.

Let a = e−ω0/κ ∈ R∗+ with a 6= 1, and let us recall general facts
from (Brenken, Jørgensen 1991): Define

Ba :=

{∑
i

mi a
ni for finitely many mi, ni ∈ Z

}
.

This discrete group is torsion-free so its Pontryagin dual B̂a is connected
and compact.

Let αa be the action of Z on b ∈ Ba defined by αa(n)b := an b, let α̂a be
the associate automorphism on B̂a and

Ga := Ba oαa Z , Ua := C∗(Ga) = C∗(Ba) oαa Z = C
(
B̂a

)
ocαa Z .

This kind of C∗-algebras also appeared in (Carey, Phillips, Putnam, Rennie
2010) for totally different purposes. The group Ga is generated by u :=
(0, 1) and v := (1, 0).
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Lemma 3.1. Let a ∈ R∗+, then Ba = B1/a and Ga ' G1/a. Thus the
C∗-algebra Ua and U1/a are isomorphic.

The symmetry point a = 1/a corresponds to the commutative case in
(4) with a = 1 or the undeformed relation (1) with κ =∞. In this spirit Ua
can be viewed as a deformation of the two-torus.

The dynamical system Ua ' C(B̂a)oαZ has an ergodic action (if a 6= 1)
(Brenken, Jørgensen 1991; Brenken 1996) and if the set of q-periodic points is

Perq
(
B̂a

)
:=
{
χ ∈ B̂a : α̂k(χ) 6= χ , ∀k < q , α̂q(χ) = χ

}
then the growth rate limq→∞ q

−1 log
(
#Perq(B̂a)

)
of this sets is an invariant

of Ua which coincides with the topological entropy h(α̂a)

h (α̂a) = lim
q→∞

q−1 log
(
#Perq

(
B̂a

))
. (6)

This entropy can be finite or infinite, dividing the algebraic properties of a
into two cases: a can be a an algebraic or a transcendental number.

3.1. Transcendental case

If a is a transcendental number, then Ba ' Z[a, a−1]. Thus, Ba ' ⊕ZZ,
B̂a ' Sa := {z = (zk)∞k=−∞ ∈ TZ} and

(
α̂(z)

)
k

= zk+1 for z ∈ Sa, k ∈ Z so
that α̂ is just the shift σ on TZ. Thus Ua ' C(TZ) oσ Z and h(α̂) = ∞.
Note that the wreath product o appears with its known presentation:

Ga = Ba oα Z ' Z o Z '
〈
u, v :

[
uivu−i, v

]
= 1 for all i ≥ 1

〉
.

This group is amenable (solvable), torsion-free, finitely generated (but not
finitely presented), residually finite with exponential growth.

Sa contains a lot of q-periodic points: they are obtained by repeating
any sequence (zk)

q−1
k=0 of arbitrary elements in T. Aperiodic points are also

easily constructed. Moreover, Sa is the Bohr compactification bBaR of R.

3.2. Algebraic case

Assume now that a is algebraic. Let P ∈ Q[x] be the monic irreducible
polynomial such that P (a) = 0 and let P = cQa, whereQa ∈ Z[x]. If d is the
degree of Qa, we get the ring isomorphism Ba ' Z[x, x−1]/(Qa) (Brenken,
Jørgensen 1991). Moreover, Ba has a torsion-free rank d. If Qa(x) =∑d

j=0 qj x
j (so Qa has leading coefficient qd ∈ N∗), let Aa ∈ Md×d(Z)

be the d × d-matrix defined by (Aa)i,j := qd δi,j−1 for 1 ≤ j ≤ d and
(Aa)d,j = −qj−1. Then qd aj =

∑d
k=1(Aa)j,k a

k−1.
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For instance, if a = 1/m for m ∈ N∗ then P (x) = x − 1/m, Qa(x) =
mx− 1, d = 1, so Ba = Z[ 1

m ] and Aa is just the number 1.
Let σ be the shift on the group (Td)Z and consider its σ-invariant sub-

group Ka := {z = (zk)∞k=−∞ ∈ (Td)Z : qd zk+1 = Aa zk} (use T ' R/Z).
If Sa is the connected component of the identity of Ka, then there exists

a topological group isomorphism ψ : B̂a → Sa such that σ|Sa ◦ ψ = ψ ◦
α̂ (Lawton 1973, Theorem 19). For any χ ∈ B̂a, the associated z = (zk)∞k=−∞
is given by z(i)

k = χ(ak+i−1), where zk = (z(i)
k )di=1 ∈ Td. In particular, z0

is given by
(
χ(1), χ(a), . . . , χ(ad−1)

)
. This map is only surjective on the

connected component of the identity.
When a = 1/m with m ∈ N∗, we will recover S1/m = Sm in (13).
There is a morphism of groups ι̂ : Rd → Sa defined as follows: to any

φ = (φ(i))i=1,...,d ∈ Rd, one associates ι̂(φ) = z = (zk)∞k=−∞ ∈ (Td)Z with

z
(i)
k = exp

2iπq−kd

d∑
j=1

(
Aka

)
i,j
φ(j)

 . (7)

This shows that Sa is a Bohr compactification of Rd (Brenken 1996, Propo-
sition 2.4). Then α̃(φ) = q−1

d Aaφ defines an action of Z on Rd which satisfies
ι̂ ◦ α̃ = α̂ ◦ ι̂.

If ri, i = 1, · · · d are the roots of P , then by (Brenken, Jørgensen 1991,
Proposition 3, Corollary 1)

cq(a) := # Perq(Sa) =
q∏

k=1

∣∣∣Qa (ei2πk/q)∣∣∣ = |qd|q d∏
k=1

|1− rkq| . (8)

Thus by (6), the topological entropy is

h(α̂a) = log |qd|+
∑

i, |ri|>1

log |ri| . (9)

In the case of a = m or a = 1/m, (9) gives h(α̂m) = h(α̂1/m) = log(m).
Aperiodic points in Sa can be easily constructed using the map ι̂ defined

by (7): any φ ∈ (R\Q)d defines an aperiodic point ι̂(φ) ∈ Sa.

3.3. On the structure and classification of algebras Ua
We can now give the main properties of the algebras Ua:

Theorem 3.2. Let a ∈ R∗+ and a 6= 1. Then
(i) The group Ga = Ba oα Z is a torsion-free discrete solvable group with
exponential growth and B̂a is a compact set isomorphic to a solenoid Sa.
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(ii) Ua = C∗red(Ba oα Z) ' C(Sa) obα Z is a NGCR1, AF-embeddable, non-
simple, residually finite dimensional C∗-algebra and its generated von Neu-
mann algebra for the left regular representation is a type II1- factor.

A main point of this theorem, crucial for the sequel is that the algebra
Ua is residually finite and its proof is based on properties of the underlying
dynamical system:

Proposition 3.3. Let a ∈ R∗+ and a 6= 1. The subgroup of periodic points
and the set of aperiodic points of Sa under α̂ are dense. The space of orbits
of Sa is not a T0-space.

The classification of algebras Ua is also based on the dynamical system:

Theorem 3.4. Let ω0 ∈ R and κ ∈ R∗+ defining a 6= 1 in (5).
(i) Ua ' Ua′ yields cq(a) = cq(a′), ∀q ∈ N∗.
(ii) The entropy h(α̂) is also an isomorphism-invariant of Ua.

This result has important physical consequences since a full Lebesgue
measure dense set of different parameters a (namely the transcendental ones)
generates the same algebra or κ-deformed space, while in the rational case,
these spaces are different:

Corollary 3.5. As already seen, Ua ' U1/a. Moreover,
(i) All transcendental numbers a generate isomorphic algebras Ua.
(ii) If Ua ' Ua′ , then a and a′ are both simultaneously algebraic or transcen-
dental numbers.
(iii) If Ua ' Ua′, then a′ = a or a′ = a−1 in the following cases: a, a′ or
their inverses are in Q∗ or are quadratic algebraic numbers.
(iv) If a = m/l ∈ Q∗+, K0(Ua) ' Z and K1(Ua) ' Z⊕ Zl−m.

Using (Brenken 1995), we can show that the K-groups do not give a
complete classification even in this algebraic case.

3.4. On some representations of Ua for algebraic a

We will concentrate on a 6= 1 algebraic and follow the construction of
finite dimensional representations (Svensson, Tomiyama 2009; Yamashita
2008): Let zq ∈ Perq(Sa) be a q-periodic point of α̂. Let ρzq : C(Sa) →
Mq(C) be a representation of C(Sa) defined by

ρzq(f) := Diag
(
f(zq), . . . , f

(
α̂q−1(zq)

) )
∈Mq(C)

1 A C∗-algebra A is said to be CCR or liminal if π(A) is equal to the set of compact
operators on the Hilbert space Hπ for every irreducible representation π. The algebra
A is called NGCR if it has no nonzero CCR ideals. An AF -algebra is a inductive
limit of sequences of finite-dimensional C∗-algebras. The algebra A is residually
finite-dimensional if it has a separating family of finite-dimensional representations.
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and for x ∈ T, let ux,zq :=
(

0 x
1q−1 0

)
∈ Mq(C). It is a unitary which satisfies

the covariance relation u∗x,zq ρzq(f)ux,zq = ρzq(f ◦ α̂) thus πx,zq := ρzq oux,zq
is a representation of Ua on Mq(C). Again, πx := ⊕∞q=1⊕zq∈Perq(Sa) is a
representation of Ua. So, for a dense family {xl}∞l=1 in T, using the canonical
faithful conditional expectation C(Sa) obα Z → C(Sa) and the density of
periodic points, one shows that π := ⊕∞l=1πxl is a faithful representation of
Ua such that π(Ua) ⊂ ⊕∞l=1 ⊕∞q=1 ⊕z∈Perq(Sa)Mq(C).

The representation πx,χ, where χ = zq ∈ B̂a = Sa, can be extended to a
representation πχ on the Hilbert space Hχ = L2(T)⊗ Cq by

πχ =
∫
T

πx,χ dx . (10)

Denote by {e(q)
s }s=1,...q the canonical basis of Cq and by en : θ 7→ einθ, for

n ∈ Z, the basis of L2(T) ' `2(Z). Then let, for f ∈ C∗(Ba) = C(B̂a):

πχ(f)
(
en ⊗ e(q)

s

)
:= f ◦ α̂s−1(χ) en ⊗ e(q)

s ,

U
(
en ⊗ e(q)

s

)
:=

{
en ⊗ e(q)

s for 1 ≤ s < q ,

en+1 ⊗ e(q)
1 for s = q ,

where U is the generator of Z. This representation is constructed from the
representation ofGa = BaoαZ given by πχ(b)(en⊗e(q)

s ) = χ◦αs−1(b) en⊗e(q)
s

for any b ∈ Ba (the generator U of the action of Z is the same).
Another natural representation to consider is the representation of Ua

obtained from the left regular representation of Ga.
In (Lim, Packer, Taylor 2001) and more systematically in (Dutkay, Jør-

gensen 2008), the induced representations à la Mackey of Ga for algebraic a
have been investigated. The main results are the following.

For any χ ∈ B̂a, let the space of functions ϕ : Ba oα Z → C such that
ϕ(b, k) = χ(b)ϕ(0, k) for any b ∈ Ba and k ∈ Z be endowed with the norm
‖ϕ‖2χ =

∑
k∈Z |ϕ(0, k)|2. This defines a Hilbert space denoted by HInd

χ . The
induced representation of Ga on HInd

χ is given by (πInd
χ (g)ϕ)(h) = ϕ(hg) for

any g, h ∈ Ga.
This representation is unitarily equivalent to the following π′χ (Dutkay,

Jørgensen 2008, Theorem 4.2): the Hilbert space is `2(Z) and for any ξ =
(ξk)k∈Z, one takes (π′χ(b)ξ)k := χ◦αk(b)ξk and the generator of Z is (Uξ)k =
ξk+1. As a representation of Ua, one has (π′χ(f)ξ)k = f ◦ α̂k(χ)ξk for any
f ∈ C∗(Ba).
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Theorem 3.6. Assume a 6= 1 is algebraic.
(i) There is a natural bijection between the set of orbits of α̂ in Sa and the set
of all equivalence classes of induced representations of Ua = C∗(Ga). This
bijection is realized by χ 7→ πInd

χ .
(ii) The representation πInd

χ is irreducible if and only if χ is aperiodic.
(iii) The commutant of πInd

χ for a q-periodic point χ is the commutative al-
gebra C(T).
(iv) The right regular representation R of Ua = C∗(Ga) is unitarily equiva-
lent to the representation

∫ ⊕
Ba
πInd
χ dµ(χ).

For a q-periodic χ, the representation πInd
χ is reducible. Explicitly one

has:

Proposition 3.7. If χ is q-periodic, πInd
χ is unitarily equivalent to the rep-

resentation πχ on Hχ, so that its continuous decomposition into irreducible
finite dimensional representations on Cq is realized by (10) along T.

This proposition states that, while the finite dimensional representations
of Ua are not obtained as induced representations, they are nevertheless re-
ductions of induced representations. The right regular representation R con-
tains the infinite dimensional irreducible induced representations which are
only accessible using aperiodic points. The representations R and πχ are not
quasi-equivalent: this difference will play a crucial role in the construction
of different spectral triples, see Remark 5.4.

While the πInd
χ s yield a von Neumann factor of type I, R gives a type II1

factor because of the integral. So the group Ga is non-type I.

4. The particular case a = m ∈ N∗

According to Lemma 3.1, the case a = m ∈ N∗ also covers the case
a = 1/m. We do insist on this κ-deformed space since the algebra is then
generated by two unitaries related by one relation (see (11) below) in the
spirit of the noncommutative two-torus: Gm = BS(1,m) is the Baumslag–
Solitar group which is generated by two elements and one-relator while, when
a and a−1 are not integers, Ga is not a finitely presented group (still with
two generators). This simplifies the computations of Sec. 3.2.

Moreover, the results described now rely more on some properties of the
Baumslag–Solitar group than on the dynamical system. Thus, these results
(which for the most are already valid and exposed for generic values of a) are
presented independently. These structures appear also naturally in wavelet
theory, which could benefit from our analysis.
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4.1. The algebra

Definition 4.1. Let Um be the universal C∗-algebra labelled by m ∈ Z∗
(restricted to N∗ later) and generated by two unitaries U and V such that

UV U−1 = V m . (11)

This universal C∗-algebra Um is denoted by O(E1,m) in (Katsura 2008),
and also Om,1(T) in (Yamashita 2008) (where only m ∈ N∗ is consid-
ered.) These algebras are topological graph C∗-algebras which can be seen
as transformation group C∗-algebras on solenoid groups as already noticed
in (Brenken, Jørgensen 1991; Jørgensen 2001; Brenken 1996). They have
been used in wavelets and coding theory (Dutkay, Han, Picioroaga, Sun
2008; Dutkay, Jørgensen 2008; Dutkay, Jørgensen, Picioroaga 2009).

Relation (11) also appeared in the Baumslag–Solitar group BS(1,m)
introduced in (Baumslag, Solitar 1962) as the group generated by u, v with
a one-relator

BS(1,m) :=
〈
u, v |uvu−1 = vm

〉
.

This group plays a role in combinatorial and geometric group theory. It is
a finitely generated, meta-Abelian, residually finite, Hopfian, torsion-free,
amenable (solvable non-nilpotent) group. It has infinite conjugacy classes,
a uniformly exponential growth (for m 6= 1) but is not Gromov hyper-
bolic (de la Harpe 2000). Note that BS(1, 1) is the free Abelian group on
two generators and BS(1,−1) is the Klein bottle group. As for the BS(1,m)
groups, within the algebras Um, we remark that U1 and U−1 play a particular
role: U1 = C(T2) and U−1 ⊃ C(T2) will not be considered here since we
need a = m > 0.

For m ≥ 2, a solenoid appears as in Sec. 3.2, as well as a crossed product
structure, a fact that we recall now in this particular context.

Assume 2 ≤ m ∈ N and let the subring of Q generated over Z by 1
m

Bm = B1/m := Z
[

1
m

]
:=
⋃
l∈N

m−lZ ⊂ Q .

It is the additive subgroup of Q which is an inductive limit of the rank-
one groups m−lZ, for l = 0, 1, 2, . . . and Bm has a natural automorphism
α defined by α(b) := mb. Note that the Abelian group Bm is not finitely
generated. When m→∞, BS(1,m)→ Z oZ (in the space of marked groups
on two generators) (Stalder 2006). This group also appears whenm = e−ω0/κ

is replaced by a transcendental number a ∈ R∗+ as seen in Sec. 3.
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Bm can be identified with the subgroup of the affine group Aff1(Q) gen-
erated by the dilatation u : x→ mx and the translation v : x→ x+ 1. It is
the subgroup normally generated in BS(1,m) by 〈v, u−1vu, u−2vu2, ...〉. The
Baumslag–Solitar group BS(1,m) is then isomorphic to the crossed product
BS(1,m) ' Bm oα Z so that one has the group extension

1→ Z
[

1
m

]
→ B(1,m)→ Z→ 1 .

Using this crossed product decomposition, the group BS(1,m) has the fol-
lowing explicit law: (b, l)(b′, l′) = (b+αl(b′), l+l′) for l, l′ ∈ Z and b, b′ ∈ Bm.
It is of course generated by the elements u := (0, 1) and fb := (b, 0) with
b ∈ Bm. Thus for j, l ∈ Z, n ∈ N, ufbu−1 = fα(b), and

if fα−nj :=
(
α−nj, 0

)
= u−nfju

n , then
((

1
m

)n
j, l
)

= f“ 1
m

”n
j
ul . (12)

BS(1,m) is a subgroup of the “ax + b” group (endowed with the law
(b, a)(b′, a′) := (b + ab′, aa′)) and can be viewed as the following subgroup
of two-by-two matrices {

(
ml b
0 1

)
: l ∈ Z, b ∈ Bm}. BS(1,m) ' B(1,m′) is

equivalent to m = m′ (Moldavanskii 1991).
Let B̂m be the Pontryagin dual of Bm endowed with the discrete topol-

ogy. It is isomorphic to the solenoid

Sm = S1/m '
{

(zk)∞k=0 ∈
∞∏
i=0

T : zmk+1 = zk, ∀k ∈ N0

}
(13)

using zk := χ
(
( 1
m)k

)
for any χ ∈ B̂m. The group Sm is compact connected

and Abelian. Notice that (see Sec. 3.2)
Sm ' {(zk)∞k=−∞ ∈ TZ : zmk+1 = zk, k ∈ Z} defining z−k := zmk0 for

k > 0.
The embedding ι̂ : θ ∈ R 7→ χθ ∈ Sm where χθ(b) := ei2πθb ∈ T for

b ∈ Bm identifies Sm as the Bohr compactification bBmR of R.
Sm is endowed with a natural group automorphism α̂ given by

α̂(z0, z1, z2, . . . ) = (zm0 , z0, z1, . . . ) , α̂−1(z0, z1, z2, . . . ) = (z1, z2, . . . ) .

All q-periodic points in Sm are of the following form: if z0 is a solution of
zm

q−1 = 1, then (z0, z
mq−1

0 , . . . , zm0 , z0, . . . ) ∈ Sm; so there are only finitely
many periodic points, namely cq(m) = mq − 1 such points.

The C∗-algebra C(Sm) ' C∗(Bm) is precisely the algebra of almost
periodic functions on R, with frequencies in Bm and the isomorphism is the
map f 7→ f ◦ ι̂. Thus

Um = C∗(BS(1,m)) ' C∗(Bm) oα Z ' C(Sm) obα Z .
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The unitary element U of Definition 4.1 is precisely the generator of the
action α of Z on C∗(Bm) while V is one of the generators {U−`V U ` : ` ∈ Z}
of the Abelian algebra C∗(Bm). As a continuous function on Sm, U−`V U `
is the function (zk)∞k=0 7→ z` and in particular, V : (zk)∞k=0 7→ z0.

The subgroup {z := (zk)∞k=0 ∈ Sm : α̂q(z) = z for some q ∈ N∗} of
periodic points is dense in Sm and α̂ is ergodic on Sm form ≥ 2 as previously
seen (Brenken, Jørgensen 1991, Proposition 1).

4.2. The representations

The knowledge of ∗-representations of Um is essential in the context of
spectral triples (see Definition 5.1). According to (12), any unitary rep-
resentation of BS(1,m) is given by a unitary operator U and a family of
unitaries Tk, k ∈ Z, with the constraint UTkU−1 = Tmk, so there is a bi-
jection between the ∗-representations of Um on some Hilbert space H and
the corresponding unitary representations of BS(1,m). This is rephrased
usefully in the following lemma (Jørgensen 2001):
Lemma 4.2. The algebra Um is the C∗-algebra generated by L∞(T) and a
unitary symbol Ũ with commutation relations, where en(z) := zn

Ũ f Ũ−1 = f ◦ em , ∀f ∈ L∞(T) . (14)

Um contains a family of Abelian subalgebras An := Ũ−n L∞(T) Ũn for
n ∈ N, which is increasing since Ũ−n f Ũn = Ũ−(n+1) f ◦ em Ũ (n+1).

If we choose the Hilbert spaceH := L2(R), the scaling and shift operators
give rise to a representation π of Um on H by π(U) : ψ(x) 7→ 1√

m
ψ( xm) and

π(V ) : ψ(x) 7→ ψ(x− 1).
The Haar measure ν on B̂m gives rise to a faithful trace on Um and,

since there are many finite dimensional representations of Um (see proof of
Theorem 3.2), there are many traces on it.

With H := L2(Sm, ν) ' `2(Bm) and U : ψ ∈ H 7→ ψ◦α̂ ∈ H, C(Sm) acts
on H by left multiplication, we get a covariant representation for (Sm, U)
of the dynamical system (C(Sm), α̂,Z), so a representation of Um on H.
Since α̂ is ergodic, this representation is irreducible and faithful (Brenken,
Jørgensen 1991, Theorem 1).

If we choose H := `2(Z), for each θ ∈ R we get an induced representation
of Um by πθ(U)ψ(k) := ψ(k − 1) and πθ(V )ψ(k) := χθ(m−k)ψ(k), k ∈ Z.

5. On the existence of spectral triples

Since we want to construct spectral triples on Ua, it is worthwhile to
know the heat decay of Ga = Ba oα Z via a random walk on the Cayley
graph of Ga with generators S = {x, x−1, y, y−1}, where x = (0, 1) and
y = (1, 0), and with a constant weight and standard Laplacian.
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The decay of the heat kernel pt, with t ∈ N, has been computed on the
diagonal in (Pittet, Saloff-Coste 2002, Theorem 1.1), (Coulhon, Grigor’yan,
Pittet 2001, Theorem 5.2): when t → ∞, we get p2t ∼ e−t

1/3 (log t)2/3 if a is
transcendental while p2t ∼ e−t

1/3 if a is algebraic. This is related to the fact
that Ga has exponential volume growth.

However, for a finite dimensional connected non-compact Lie group, the
behaviour of the heat kernel pt depends on t ∈ R∗+ and can diverge for
the short time behaviour when t → 0. Let us explain how this point is
related to the dimension: In noncommutative geometry, a (regular sim-
ple) spectral triple (A,H,D) has a (spectral) dimension which is given by
max{n ∈ N : n is a pole of ζD : s ∈ C → Tr(|D|−s)} (here D is assumed
invertible). In particular, when M is a n-dimensional compact Riemannian
spin manifold, and A = C∞(M), H = L2(S), where S is the spinor bun-
dle and D is the canonical Dirac operator, the spectral dimension coincides
with n. Via the Wodzicki residue, an integral

∫
X := Ress=0 Tr(X|D|−s) is

defined on (classical) pseudodifferential operators X acting on smooth sec-
tions of S. For instance,

∫
|D|−n coincides (up to a universal constant) with

the Dixmier trace TrDix(|D|−n) = limN→∞ log(N)−1
∑N

k=1 |λk|−n, where
the λk are the singular values of D. The dimension of M appears in
Tr(e−tD

2
) ∼

∑
N≥0

1
t(n−N)/2 aN (D) when t→ 0. In particular, whenM = Rn

with Lebesgue measure and D2 = −4 is the standard Laplacian (non-
compactness is not a problem), the heat kernel is pt(x, x) = 1

(4πt)n/2
for all

x ∈ M (see (Connes 1994; Connes, Marcolli 2008; Gracía-Bondía, Várilly,
Figueroa 2001). As a consequence, Tr(|D|−(n+ε)) <∞ for all ε > 0.

We will see that, depending on the chosen representation of Ua, such an
n does not always exist, meaning that the “dimension is infinite”.

Definition 5.1. A spectral triple (also called unbounded Fredholm module)
(A,H,D) is given by a unital C∗-algebra A with a faithful representation π
on a Hilbert space H and an unbounded self-adjoint operator D such that

— the set A = {a ∈ A : [D, π(a)] is bounded } is norm dense in A,

— (1+D2)−1 ∈ J , where J is a symmetrically-normed ideal of the compact
operators K(H) on H.

The triple is p-summable if J = Lp(H) for 1 ≤ p < ∞ which means
Tr
(
(1 +D2)−p/2

)
<∞. It is p+-summable if J = Lp+(H).

It is finitely summable if it is p-summable for some p.
It is θ-summable if there exists t0 ≥ 0 such that Tr

(
e−tD

2)
< ∞ for all

t > t0 (thus J = K(H)).

Note that A is a ∗-subalgebra of A and p-summability implies θ-sum-
mability.
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Connes proved in (Connes 1989) that, for an infinite, discrete, non-
amenable group G, there exist no finitely summable spectral triples on
A = C∗red(G). However, in this case, there always exist θ-summable spectral
triples on A (even with D > 0). Using a computable obstruction to the
existence of quasicentral approximate units relative to J for A, Voiculescu
was able to derive, for solvable groups with exponential growth, the non-
existence result for unbounded (generalized) Fredholm modules using the
Macaev ideal J = L∞,1(H) (Voiculescu 1990). We use these results in the
following:

Theorem 5.2. Non-existence of finite-summable spectral triples.
Let A = Ua, Ga = Ba oα Z and A = C[Ga].

(i) There is no finitely summable spectral triple
(
π(A),Hπ,D

)
when the rep-

resentation π is quasiequivalent to the left regular one.
(ii) There exist θ-summable spectral triples

(
π(A),Hπ,D

)
with t0 = 0, where

the representation π is quasiequivalent to the left regular one.

Despite the previous result, we add a few explicit examples of spectral
triples using the fact that the algebra Ua is residually finite. Clearly, these
triples deal with a restrictive part of the geometry of the κ-deformation
based on Ua, namely the dynamical system which is behind. The residually
finite property is seen via the periodic points of this dynamics.

Theorem 5.3. Existence of finite-summable spectral triples.
Let A = Ua and A = C[Ga].

(i) There exist spectral triples
(
π(A),Hπ,D

)
which are compact, i.e. [D, π(x)]

is compact for all x ∈ A.
(ii) There exist spectral triples

(
π(A),Hπ,D

)
such that [D, π(x)] = 0,

∀x ∈ Ua, and with arbitrary summability.
(iii) When a is algebraic, there exist spectral triples

(
π(A),Hπ,D

)
such that

[D, π(v)] = 0, [D, π(u)] 6= 0 and with arbitrary summability p ≥ 2.

In the case of (i), [D, π(x)] is not necessarily zero but the summability is
not controlled while for the case (ii), the condition [D, π(x)] = 0 enables us
to control summability. In a sense, case (iii) is a mixed situation requiring
that a be algebraic. In that situation, we have an explicit representation π
so that formulae for Dirac operators can be proposed.

Remark 5.4. There is no contradiction between Theorems 5.2 and 5.3 since
the faithful quasidiagonal representation (or residually finite one) π of Ua
used above to construct D is not quasiequivalent to the left regular one: ac-
tually, as already mentioned, the von Neumann algebra generated by π(Ua)
is a II1 factor when π is the left regular representation, while it is of type I
when π is the quasidiagonal or residually finite one (Dixmier 1964, 5.4.3.).
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A more direct way to confirm that the representation π used in the proof
of point (iii) of Theorems 5.3 is not quasiequivalent to the left regular repre-
sentation (or to the right regular representation which is unitarily equivalent
to the left one) is to notice that π is the direct integral π =

∫ ⊕
Per πχ dµ(χ)

of the finite dimensional representations πχ defined in (10). As such, this
representation is strictly contained in the right regular representation R as
can be checked using (iv) of Theorem 3.6. The part of R which is not in π
is given by the induced infinite dimensional irreducible representations con-
structed on aperiodic χs.

As noticed in (Skalski, Zacharias 2009), if (A,Hπ,D) is a spectral triple
with [D, π(x)] = 0, ∀x ∈ A, then A is a residually finite C∗-algebra.

Remark 5.5. Theorem 5.2 says that the 2-dimensional κ-deformed space
reflected by the algebra Ua with κ = −ω0 log−1(a) is in fact “infinite di-
mensional” as a metric noncommutative space. Theorem 5.3 is a tentative
to restore a metric. For instance, the distances on the state space S(Ua)
generated by Connes’ formula

d(ω, ω′) := sup
{
|ω(a)− ω′(a)| : a ∈ A, ||[D, a]|| ≤ 1

}
, ω, ω′ ∈ S(Ua)

are infinite in the case (ii) of Theorem 5.3, while in the case (iii) some states
can be at finite distances.

Remark 5.6. The operator D given in Theorem 5.3 (iii) is not directly
related to the group structure of Ga but rather connected to the underlying
dynamical system associated to the algebraic nature of a: it depends explicitly
of the isomorphism-invariant {cq(a) : q ∈ N∗}.

6. Conclusion

We have shown that κ-Minkowski space defined by (1) can be reduced to
a compact or discrete version. Depending on κ, or on a defined in (5), this in-
volves discrete amenable groups Ga, in particular the well-known Baumslag–
Solitar ones. The associated C∗-algebras Ua can be viewed as a deformation
of the two-torus. They are different when a varies within the rational num-
bers (of zero Lebesgue measure) because of the structure of the underlying
dynamical system. For transcendental values of a, which are dense in R+

and of full Lebesgue measure, all these algebras are isomorphic to each other.
Due to the exponential growth of Ga, we have proved that the algebras

Ua are not only quasidiagonal but also residually finite dimensional. They
admit different spectral triples: the ones which are quasi-equivalent to the
left regular representation and are never p-summable but only θ-summable,
i.e. they are of “infinite metric dimension”. This situation reminds us of the
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passage from non-relativistic to relativistic quantum mechanics: in quantum
field theory, the θ-summability (and not the p-summability) naturally occurs
due to the behaviour of Tr(e−tH) (when t→ 0), where H is the Hamiltonian
(or D2), see for instance (Carpi, Hillier, Kawahigashi, Longo 2010).

The other faithful representations can generate fancy spectral triples
which can have arbitrary summability (or “dimension”) depending on the
algebraic properties of the real parameter a, but are in fact degenerate to
some extent. It is also not entirely clear what the topological content of these
unbounded Fredholm modules is (i.e. whether they correspond to nontrivial
elements of K-homology). The dimension of these spectral triples is un-
related to the number of coordinates defining the κ-deformed Minkowski
spaces.

The nonexistence theorem, though powerful, does not preclude the pos-
sible existence of a genuine, non-degenerate, nontrivial spectral geometry
on the κ-deformation spaces presented here, they only restrict the possible
algebra representations that could be used in the construction.

This shows how delicate the notion of spectral or metric dimensions of
κ-Minkowski space is, and how subtle its analysis through noncommutative
geometry.

We thank Alain Connes, Michael Puschnigg, Adam Skalski and Shinji
Yamashita for helpful discussions or correspondence. B.I. and T.S. acknowl-
edge the warm hospitality of the Institute of Physics at the Jagiellonian
University in Kraków, where this work was started under the Transfer of
Knowledge Program “Geometry in Mathematical Physics”.
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