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More than 50 years ago it was realized that General Relativity could be
expressed in Hamiltonian form. Unfortunately, just like electromagnetism
and Yang–Mills theory, the Einstein equations split into evolution equa-
tions and constraints which complicates matters. The 4 constraints are
expressions of the gauge freedom of the theory, general covariance. One
can cleanly pose initial data for the gravitational field, but this data has
to satisfy the constraints. To find the independent degrees of freedom, one
needs to factor the initial data by the constraints. There are many ways of
doing this. I can do so in such a way as to implement the model suggested
by Poincaré for a well-posed dynamical system: Pick a configuration space
and give the free initial data as a point of the configuration space and a
tangent vector at the same point. Now, the evolution equations should
give a unique curve in the same configuration space. This gives a natural
definition of what I call the true gravitational degrees of freedom.
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1. Introduction

Following the work of Dirac [1], and Arnowitt, Deser and Misner [2],
we know that general relativity can be expressed as a dynamical theory,
just like the other standard theories of physics. In GR one can specify
initial data and then integrate forward in time. This is more complicated
than, say, particle mechanics, because of gauge freedom and of the existence
of constraints. The obvious models are electromagnetism and Yang–Mills
theory which share both features. The gauge freedom allows us to write
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the field equations in a very simple and compact form, while simultaneously
obscuring the underlying physics. We need to find a gauge choice and a way
of solving the constraints which renders everything transparent.

The ideal is to express gravity in the Poincaré form ([3], Sec. 5), i.e.,
pick a configuration space, define the initial data as a point and a velocity in
the configuration space, and have the evolution equations generate a unique
curve in this configuration space. This clean pattern, which amounts to
finding the true degrees of freedom of gravity, has eluded all of us until now.

The standard initial data for gravity consists of a giving a space-like
3-slice, equipped with a Riemannian 3-metric, gij and a symmetric tensor
Kij , which is to be the extrinsic curvature of this slice. The extrinsic curva-
ture is the time derivative of the 3-metric. More precisely,

Ln̂gij = 2Kij , (1)

where L is the Lie derivative and n̂ is the unit time-like normal to the
3-slice. This pair (gij ,Kij) are the analogues of the position and momentum
in mechanics. A better analogy is with electromagnetism (or Yang–Mills)
when one specifies the 3-vector potential and the electric field as initial data.
GR is like electromagnetism in that the 10 Einstein equations split into
6 evolution equations, which propagate the 3-metric, and 4 constraints on
the initial data. The constraints, which prevent free specification of gij and
Kij , have to be taken into account. To complicate matters, the constraints
can be regarded as the generators of/generated by the gauge freedom,
4-dimensional general covariance. Therefore ‘solving the constraints’ is, at
some level, equivalent to ‘fixing the gauge’. For an up-to-date and compre-
hensive account of the constraints, see [4], especially Chapter VII.

The constraints are

(3)R−KijKij +K2 = 0 , (2)

∇jKj
i −∇iK = 0 , (3)

known as the Hamiltonian and momentum constraints respectively; (3)R is
the scalar curvature of gij and K = gijK

ij is the trace of the extrinsic
curvature. To identify the ‘true gravitational degrees of freedom’ and the
configuration space of general relativity, we need to ‘factor’ the metric and
extrinsic curvature by the constraints.

I am going to restrict my attention to vacuum solutions of the Einstein
equations where the space-like 3-slices are compact, without boundary. I do
not restrict the topology. I further restrict myself to those solutions which
are ‘CMC-sliceable’, i.e., I assume that each space-time has at least one
space-like slice through it on which trK, the trace of the extrinsic curvature,
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is a constant. I do not care about the value of the constant, even whether
it is positive or negative. I will return to this question of the generality of
this condition at the end.

The key choice in this analysis is the choice of configuration space. I claim
that conformal superspace is a good choice. Conformal superspace is the
space of metrics, factored both by all diffeomorphisms and by all conformal
transformations.

The idea that conformal superspace (CS) is the natural configuration
space for gravity goes back to Lichnerowicz [5], who used a conformal trans-
formation to write the Hamiltonian constraint, Eq. (2), as a nice elliptic
equation for the conformal factor. We take the conformal approach signifi-
cantly further. This article is an extension of the key work on the subject by
York [6]. I want to show that I can pick the free initial data for the gravita-
tional field as a point and a and a tangent vector (the velocity) in conformal
superspace. Combining the constraints and the Einstein evolution equations
generates a vacuum space-time as a unique curve in conformal superspace.
Thus, I can express gravity in Poincaré form. The key to this paper is the
realization that there exists an extra symmetry in the conformal method of
solving the constraints which makes everything work.

In a conformal 3-geometry C one can view the conformal freedom as
being coded into √g, where g is the determinant of gij . I wish to regard √g
as gauge, just like the coordinates. If we take the trace of Eq. (1) we can
show

Ln̂
√
g = K

√
g . (4)

Therefore (
√
g,K) are canonically conjugate variables. If √g is gauge, so

is K.
A key point of this article is that transverse-traceless (TT) tensors

(a tensor hTT
ij is TT if it is both transverse (∇jhTT

ij = 0) and traceless
(gijhTT

ij = 0)) are natural objects on CS.
First, TT tensors define the tangent space to CS. Consider two nearby

metrics in Riem, gij and gij+εhij , with ε a small parameter. Any symmetric
tensor, in particular hij , has a unique TT part with respect to a gij via [7]

hij = hTT
ij +∇iλj +∇jλi − 2

3∇kλ
kgij + 1

3hgij ; (5)

∇iλj + ∇jλi − 2
3∇kλ

kgij is the conformal Killing form of a vector λj and
h = gijhij is the trace of hij . Now, merge the trace term in the conformal
Killing form with h and rewrite the decomposition as

hij = hTT
ij +∇iλj +∇jλi + 1

3 h̄gij , (6)
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where h̄ = h−2∇kλkgij . We can interpret ∇iλj+∇jλi (the Killing form) as
the change in gij due to an infinitesimal change of coordinates, and h̄gij/3 as
an infinitesimal conformal transformation. These two are the generators of
the symmetries we factor out in going from the space of metrics to CS, and
merely change the representation in a given equivalence class corresponding
to the given gij . The true perturbation in CS is hTT

ij . The set of TT tensors
defines the tangent space to CS.

Second, TT tensors are conformally covariant [7]. If hTT
ij is TT w.r.t.

gij and ξ is any function, then ξ−2hTT
ij is TT with respect to ξ4gij . This is

just straightforward algebra. The exponent −2 is the power of the confor-
mal factor for a down–down TT tensor, it is −6 for up–down and −10 for
up–up. Thus (ξ4gij , ξ−2hTT

ij ) represents the same C and tangent vector as
gij and hTT

ij .
Third, asymptotically flat initial data have a well-defined total energy,

the ADM energy. Brill and Deser, in [8], showed that if one made a per-
turbation expansion in the initial data about flat space, the first non-trivial
contribution to the energy came at second order and had the form

16π
(

1
2δ

2EADM

)
=
∫
d3x
[

1
4

(
δgTT
ij,k

)2
+
(
δKTT

ij

)2 ]
.

This expression is very similar to the Poynting energy expression, (E2+B2),
in electromagnetism, and shows that the TT terms are the true excitations
of the gravitational field in the weak-field limit. The challenge is to extend
this to the strong field/no boundary case.

2. The conformal method

As stressed in the introduction, I am going to confine myself to the
situation where the 3-manifold is compact without boundary, and the trace
of the extrinsic curvature is a nonzero constant. The standard conformal
method, [4], starts with the realization that if the extrinsic curvature has
a constant trace then the momentum constraint, Eq. (3), implies that the
tracefree part is transverse. Hence

Kij = KTT
ij + 1

3Kgij . (7)

The conformal method, and especially the TT decomposition, (5), paral-
lels the standard way of solving the Maxwell constraints, where the standard
decomposition of a vector into a transverse part and the gradient of a scalar,
V i=V i

t +∇iφ, to convert the Maxwell constraint, ∇iDi=ρ into the Poisson
equation. We start with a freely specifiable metric and a symmetric tensor,
(ḡij , F̄ij), make the decomposition (5), and extract the TT part of F , with
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respect to the given gij , which I call K̄TT
ij . I now consider the pair (ḡij , K̄TT

ij ).
I call this pair the initial data, considered as a point and tangent vector in
CS by considering the equivalence class (θ4ḡij , θ−2K̄TT

ij ) for all positive θs .
The standard way is to adjoin any constant (nonzero) K, and obtain

the triplet (ḡij , K̄TT
ij ,K). Now, seek a conformal factor φ which maps

this triplet into a new triplet satisfying the constraints via (gij ,KTT
ij ,K) =

(φ4ḡij , φ−2K̄TT
ij ,K). Then Kij , constructed as Kij = KTT

ij + 1
3Kgij , follow-

ing from Eq. (7), satisfies the momentum constraint, while the Hamiltonian
constraint transforms into the Lichnerowicz–York (L–Y) equation

8∇̄2φ− R̄φ+ K̄ij
TTK̄

TT
ij φ−7 − 2

3K
2φ5 = 0 , (8)

R̄ is the 3-scalar curvature formed from ḡij (as is ∇̄). Equation (8) always
has a unique positive solution φ > 0 [9] as long as K 6= 0 and K̄TT 6= 0.

Further, we can transform the initial data with an arbitrary positive
function ξ to (ḡ′ij , K̄

′TT
ij ,K ′) = (ξ4ḡij , ξ−2K̄TT

ij ,K). The conformal covari-
ance of the L–Y equation emerges via the fact that when these ‘new’ data
are injected into the L–Y equation the ‘new’ conformal factor φ′ = φ/ξ! This
means that the data we construct to satisfy the constraints (g′ij ,K

′TT
ij ,K ′) =

(φ′4ḡ′ij , φ
′−2K̄

′TT
ij ,K ′) are identical to the set we got without the transfor-

mation with ξ.
This is almost good enough: since making an arbitrary conformal trans-

formation changes nothing, ḡij can be regarded as a point in CS and K̄TT
ij

can be regarded as a velocity in CS at that point. However, the need to
specify K as an extra initial datum complicates things. We do not have the
initial data in Poincaré form. We have an extra free constant K in the initial
data and, at best, we get a solution curve in superspace rather than confor-
mal superspace. In fact, we can transform K from a ‘free’ to an ‘auxiliary’
variable and thus effectively eliminate it. It turns out that I can do this
because the constraints have an extra, unexpected but simple, symmetry.

3. Rescaling freedom

Pick a (positive or negative) constant A. Let (gij ,Kij) solve the con-
straints. Now transform them as follows: (ḡij , K̄ij) = (A2gij , AKij). The
new data will also satisfy the constraints. Each term in the Hamiltonian con-
straint picks up a factor of A−2 and each term in the momentum constraint
is multiplied by A−1.

This symmetry also commutes with the conformal method of construct-
ing solutions to the constraints as follows: Let us take the specified initial
data and transform them as follows: pick a constant A 6= 0. Construct
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‘new’ initial data (we think of these as ‘rescaled’ data, the terminology will
become clear soon)(

ḡ′ij , K̄
′TT
ij ,K ′

)
=
(
A2ḡij , AK̄TT

ij ,K/A
)
. (9)

Substitute these data into the L–Y equation. One can see that each term
in the equation picks up a factor of A−2. Therefore φ′ = φ. Hence this
rescaling commutes with the L–Y equation. We can rescale either before
or after solving the L–Y equation. We get the same final (rescaled) data
satisfying the constraints.

Why ‘rescaling’? Take any initial data satisfying the constraints and
propagate them. This gives a (patch of) space-time with a space-time
4-metric gµν satisfying the Einstein equations. If we use geometric units,
so that the speed of light = 1, then we have only one dimensionful quantity
(say ‘meters’). Following Dicke [10] I choose to put the dimensions into the
metric and consider the coordinates as pure numbers, labels of points. Let
us decide to change our units from ‘meters’ to ‘yards’. This is achieved by
multiplying the space-time metric by a space-time constant A, i.e., gµν →
A2gµν . This new metric continues to satisfy the Einstein equations. The
effect of this rescaling on the 3 + 1 data is (g′ij ,K

′
ij) = (A2gij , AKij), or

(g′ij ,K
′TT
ij ,K ′) = (A2gij , AK

TT
ij ,K/A).

We should stress that this ‘rescaling’ transformation (g′ij ,K
′TT
ij ,K ′) =

(A2gij , AK
TT
ij ,K/A) is not a subset of the conformal transformations

(ḡ′ij , K̄
′TT
ij ,K ′) = (ξ4ḡij , ξ−2K̄TT

ij ,K) mentioned earlier. In one case the
solution of the constraints that emerges is rescaled, in the other case the
solution is unchanged. We now show that this new extra symmetry means
that K does not correspond to an extra physical initial datum in CS but
merely to a choice of units in space-time.

I picked the initial data as a metric, gij , and a TT tensor (ĝij , K̂TT
ij ),

regarding these as a point and tangent in CS even though we have to work
in Riem. Now I pick a constant K1, which may be positive or negative, but
not zero. I think of K1 as a gauge auxiliary, necessary to implement the
procedure, but which can be eliminated at the end. From these I construct
‘intermediate’ data(

ḡij , K̄
TT
ij , K̄

)
=
(
K−2

1 ĝij ,K
−1
1 K̂TT

ij ,K1

)
. (10)

These intermediate data are of the standard form, i.e., metric + TT tensor
+ constant, so I can substitute them into the L–Y equation, Eq. (8), find the
solution φ1 and construct data which satisfy the constraints (gij ,KTT

ij ,K) =
(φ14ḡij , φ−2

1 K̄TT
ij , K̄1).
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Let us now go back and, leaving the initial data unchanged, pick a new
constant, K2, and repeat the construction. We find new intermediate data
(ḡij , K̄TT

ij , K̄) = (K−2
2 ĝij ,K

−1
2 K̂TT

ij ,K2), a new solution φ2 to the L–Y
equation, and new solution data satisfying the constraints. What is the rela-
tionship between the two sets of solution data? If we look at the two sets of
intermediate data we can see that the mapping between them is just a rescal-
ing transformation as introduced earlier. We have (K−2

2 ĝij ,K
−1
2 K̂TT

ij ,K2) =
(A2K−2

1 ĝij , AK
−1
1 K̂TT

ij ,K1/A) with A = K1/K2. This means that φ1 = φ2,
and, one of the solutions of the constraints is just a rescaling of the other.
Therefore, holding the initial data fixed, and changing the value of K gen-
erates solutions of the constraints that are related by rescaling.

4. Curves in conformal superspace

We can see three routes to proceed from this point. The first, and
for us least desirable, is to abandon the 3 + 1 viewpoint and return to a
4-dimensional picture. Then each set of initial data, (ĝij , K̂TT

ij ), will gener-
ate a family of space-times (one for each choice of K) which can be mapped
into each other by constant rescalings.

The second is to maintain the 3 + 1 idea, but live with many-fingered
time. From a given set of initial data, we know that the evolution equations
generate an infinite family of curves through superspace, each corresponding
to a different slicing of the space-time. The family of curves arising from
data set 1 is different from the curves from data set 2. However, when the
families are mapped into conformal superspace, they coincide.

The third, and the one we favour, is to realise that we have constructed
a CMC initial data slice, and that it is very natural to extend this into
the space-time as a CMC foliation. Look at Eq. (4), Ln̂

√
g = K

√
g. This

tells us that, on a CMC slice, the fractional time rate of change of the local
volume is a constant. Therefore, these CMC slices are the natural ‘Hubble
time’ slices of a cosmology. There always exists a (two-sided) CMC foliation
around any given CMC slice. This, and only this, preserves the TT-ness
of the extrinsic curvature. To maintain it, we solve the elliptic lapse-fixing
equation

∇2N −KijKijN = C (11)

for the function N , the lapse function; C is some constant, conveniently
taken to be C = −1. Equation (11) has a unique solution. In addition, if
C < 0, then N > 0 and vice versa.

We now evolve (gij ,Kij) with respect to the time label t using

∂gij
∂t

= 2NKij +∇iNj +∇jNi . (12)
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This is just rewriting Eq. (1) in 3 + 1 language. There is also a further
equation for ∂Kij/∂t that we omit; in both we may set the freely specifiable
Nj to zero, but must continuously update N(t, xk) using Eq. (11). This
evolution system fixes ∂K/∂t = C and generates the desired CMC foliation.
Thus each choice of initial data with arbitrary, but constant, K, will generate
different (rescaled) paths through superspace but will generate the same
path through conformal superspace.

In this construction, we are locked in to constructing CMC initial data
but we are not locked into CMC evolution. While the CMC foliation condi-
tion is a useful choice of slicing, and one where one can see clearly that one
gets a unique curve in conformal superspace, any slicing condition which is
‘rescalable’ works just as well. This means that we need not worry about the
fact that the CMC slicing may die before will fill out the whole space-time.

We choose the initial data to be a point and a velocity in conformal
superspace, with no specification of the local scale. This local scale emerges
when we solve the L–Y equation. To find initial data in Riem or in super-
space we also need to specify a ‘unit length’. This is why we have to pick
a K. However, the solution to the Einstein equations, regarded as a curve in
conformal superspace, is independent of the choice of K. We may therefore
conclude that conformal superspace is the configuration space for gravity.

While rescaling invariance is a symmetry of general relativity, and there-
fore one does not require that one choose CMC data. However, only for
CMC data can one use rescaling invariance to demote K from being a phys-
ical to an auxiliary variable, and thus cast the Einstein equations in Poincaré
form. This seems to me to be a very attractive feature, attractive enough
to restricting the set of space-times we consider to those with a CMC slice.
Choosing the CMC condition does impose some restrictions. Every space-
time with a single CMC slice has a CMC foliation. This eliminates all
space-times with close time-like loops. I do not regret their elimination.
I do know that for cosmologies, ‘Hubble time = CMC slicing’. I also know
that, in the space of metrics, the family of CMC slicable space-times forms
an open set. I also can make a counting argument to show that the ‘number
of CMC initial data sets = number of vacuum space-times’. It could be
that many space-times with a CMC foliation possess many different such
foliations. Minkowski space is an obvious example. I do not consider this
likely, but it may possibly be true. Therefore, I have to restrict my attention
to the family of space-times with a CMC slice and I feel that the benefit
outweighs any drawback.

I would like to draw the reader’s attention to three recently posted arti-
cles [16]. These show that in GR one can trade reparametrisation invariance
for conformal invariance. We use a concrete version of this trade-off in a
form that mimics the classical theories of physics.
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