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The concept of moduli is illustrated in several problems from geometry
and physics. These problems range from complex geometry to supersym-
metric gauge theories, integrable models, and string theory. Some of them
are quite classical, but others have emerged only relatively recently, for
example in the interplay between complex geometry and two-dimensional
supergravity.
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1. Introduction

The moduli space of a smooth surface Σ is the space of complex struc-
tures on Σ. The importance of this notion was probably first recognized
by Riemann. Since then, it has acquired a broader meaning, as the space
of more refined geometric structures of any particular type that can be car-
ried by a topological space. Well-known examples are the moduli space of
Calabi–Yau manifolds, the moduli space of stable holomorphic vector bun-
dles, and the moduli space of Yang–Mills connections. Other examples of
more recent origin are the moduli space of 2-dimensional supergeometries,
and the moduli space of complex structures with Abelian integrals with poles
at given points. In general, the global function theory on a manifold will
depend on its moduli. A concrete example of this is the familiar Jacobi func-
tion θ(z|Ω) on a complex torus X = C/Z +ΩZ, where z is the variable on
X, and Ω is the moduli parameter. So it is not surprising that moduli play a
major role in geometry and function theory. What is perhaps less expected
is the preponderance of geometric structures involving complex structures,
even in physical problems where no complex structure was built-in at the
start. In this sense, moduli theory fit most naturally in complex analysis
and complex geometry.
∗ Presented at the Conference “Geometry and Physics in Cracow”, Poland, September
21–25, 2010.
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This article is a contribution to the proceedings of the Conference on Ge-
ometry and Physics held at the Jagiellonian University, Kraków, in Septem-
ber 2010. At the conference, the author was assigned the task of providing
an informal and broad introduction to a selection of topics of interest in
both complex geometry and theoretical physics, and to indicate some open
problems. The common theme of moduli seemed particularly appropriate.
The occurrence of moduli problems is quite widespread in physics, and for
his lectures, the author has necessarily selected topics with which he is most
familiar. The present article reflects these choices. The list of references
is also necessarily very incomplete, given the vast literature on all the top-
ics touched upon here. It is hoped that the reader can consult the many
excellent review papers which are available for a more comprehensive bibli-
ography.

2. Moduli and Riemann surfaces

The prototype of moduli is the moduli space of complex structures on
a surface Σ, or moduli space of Riemann surfaces. This moduli space has
an amazingly rich and deep structure. For our purposes, we need only the
following facts [1, 2, 3, 4].

Let Σ be a smooth compact oriented surface of genus h. From the
differential geometric viewpoint, a complex structure on Σ is an equivalence
class of metrics ds2 = gkmdx

mdxk, modulo the combined actions of the Weyl
group ds2 → e2u(x)ds2 and the diffeomorphism group Diff(Σ). The moduli
space of complex structures on Σ is given by

Mh = {metrics gij} /Weyl×Diff(Σ) . (2.1)

A fundamental theorem is the uniformization theorem, one formulation of
which is that any metric gkm is Weyl equivalent to a unique metric ĝkm of
constant scalar curvature R̂ = ±1, 0 (with an additional normalization of
area when h = 1). Thus we can also write

Mh =
{

metrics ĝij ; R̂ = ±1, 0
}
/Diff(Σ) . (2.2)

From the complex geometric viewpoint, a complex structure on Σ is a
covering of Σ by charts Σ = ∪αΣα, each of which is in correspondence
Σα 3 z → zα with an open disk in C, and zβ ◦ z−1

α is a holomorphic in-
vertible map from zβ(Σα ∩ Σβ) to zα(Σα ∩ Σβ). The equivalence between
the two definitions of complex structures follows from the existence of local
isothermal coordinates zα for any metric ds2, with respect to which we can
write ds2 = e2uα(z)dzαdzα.
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The global structure of the moduli space Mh is complicated, but its
local structure is easy to understand. A complex structure can be viewed as
an operator ∂z̄, given by ∂z̄ = ∂z̄α in local coordinates. The notion of local
holomorphic functions, defined as solutions of the equation

∂z̄αf = 0 , (2.3)

is independent of the choice of local coordinate systems and hence well-
defined. A deformation of complex structures is a deformation of the oper-
ator ∂z̄ to an operator

∂z̄ − µz̄z∂z . (2.4)

The deformation term corresponds thus to a tensor µ = µz̄
zdz̄⊗ ∂

∂z , called a
Beltrami differential. Under Weyl scalings, the complex coordinate zα and
hence the operator ∂z̄α does not change, while under local diffeomorphisms,
parametrized by a vector field δvz, it changes by ∂z̄(δvz). In this way, the
tangent space T (Mh), which is the space of infinitesimal deformations of
the complex structure defined by gmk, can be identified with the following
quotient vector space

T (Mh) = {µz̄z}/ {∂z̄(δvz)} . (2.5)

This tangent space clearly admits complex multiplication, so it inherits a
natural almost-complex structure which can be verified to be integrable.
This shows thatMh is a complex manifold (actually,Mh does have orbifold
singularities, due to the fixed points of the diffeomorphisms not connected
to the identity. But we shall ignore this important aspect in this lecture, and
discuss only when necessary the closely related issue of modular invariance).

As a compact complex manifold, the Riemann surface Σ does not admit
any global holomorphic function besides constants. However, there are many
natural holomorphic line bundles on Σ which do admit non-trivial global
sections, and these sections play a fundamental role in both geometrical and
physical applications. Let Λp,0(Σ) be the line bundle of (p, 0)-forms on Σ.
Then the Riemann–Roch theorem gives the dimension of its space of global
holomorphic sections

dimH0
(
Σ,Λ1,0

)
= h (2.6)

and

dimH0
(
Σ,Λp,0

)
= (2p− 1)(h− 1) (2.7)

for h ≥ 2, and dimH0(Σ,Λp,0) = 1 for h = 1. Now, on a surface Σ of
genus h, a canonical homology basis (AI , BI), 1 ≤ I ≤ h can be chosen,
i.e., #(AI ∩ AJ) = #(BI ∩ BJ) = 0, #(AI ∩ BJ) = δIJ . Such a basis
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determines uniquely a corresponding basis ωI of H0(Σ,Λ1,0) dual to the
cycles AI . Their periods around the BI cycles define the period matrix
Ω = (ΩIJ) ∮

AI

ωJ = δIJ ,

∮
BI

ωJ = ΩIJ . (2.8)

The Torelli theorem asserts that the complex structure of Σ is determined
by its period matrix. Of particular interest are also sections of Λ2,0, or
quadratic differentials φ = φzzdz

2. This space is dual to the space of Bel-
trami differentials via the canonical pairing

〈µ, φ〉 =
∫
Σ

µz̄
z φzz (2.9)

and the quotient space T (M) is dual toH0(Σ,Λ2,0). It follows, in particular,
thatMh has complex dimension 3h–3 for h ≥ 2 and dimension 1 when h = 1.
In the process, we have also learnt thatMh comes equipped with two natural
holomorphic line bundles, namely the Hodge bundle λ whose fiber λΣ at Σ
is defined by

λΣ = ∧maxH0
(
Σ,Λ1,0

)
, (2.10)

and its own canonical bundle K(Mh) whose fiber KΣ(Mh) at Σ is defined
by

KΣ(Mh) = ∧maxH0
(
Σ,Λ2,0

)
. (2.11)

So far we have discussed only integer values of p. But the bundle Λ1,0(Σ)
admits globally well-defined square roots, known as spin bundles. On a
surface of genus h, there are actually 22h of them. By the Gauss–Bonnet
theorem, the Chern class of Λ1,0 is 2h−2, and the Chern class of spin bundles
is h−1. Now, for each k, the space Pick(Σ) of line bundles of Chern class k
is isomorphic with the space Pic0(Σ) via Pic0(Σ) 3 L→ L⊗S ∈ Pick(Σ),
once a reference line bundle S ∈ Pick(Σ) has been chosen. In the particular
case of Chern class h − 1, an important observation is that a choice of
homology basis AI , BI determines a particular spin bundle S[0]. Thus the
space Pich−1(Σ) gets identified correspondingly with Pic0(Σ).

A line bundle L with c1(L) = 0 can be characterized by a flat connection,
which can be characterized in turn by the holonomy of its sections around
the basis of homology cycles

ϕ(z +AI) = exp
(
2πiδ′I

)
ϕ(z) , ϕ(z +BI) = exp

(
−2πiδ′′I

)
ϕ(z) . (2.12)
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Here we have denoted informally by z+C the effect of transporting z along a
closed cycle C. The spaces Pic0(Σ), and hence Pich−1(Σ), can be identified
in this way with the space of characteristics δ = (δ′, δ′′) ∈ [0, 1)h × [0, 1)h.
More concretely, define the function θ[δ](z|τ) on Ch ×H by

θ[δ](Z|Ω) =
∑
n∈Zh

exp
[
πi
(
nI + δ′I

)
ΩIJ

(
nJ + δ′′J

)
+ 2πi

(
nI + δ′I

) (
Z + δ′′I

)]
.

(2.13)
It transforms as follows under the above shifts

θ[δ](Z +M +ΩN |Ω) = exp
(
−πiNIΩIJNJ − 2πiNI

(
ZI + δ′′I

)
+2πiδ′IMI

)
θ[δ](Z|Ω) . (2.14)

Then sections s of the bundle L with the transformations (2.12) can be
obtained by imbedding the surface Σ in Pic0(Σ) by the Abel map

Σ 3 z →
z∫

P

ωI ∈ Ch/
(
Zh +ΩZh

)
= Pic0(Σ) (2.15)

and essentially restricting the θ-function to the image of Σ

s(z) =
θ[δ]

(
Z +

z∫
P

ω|Ω
)

θ[0]
(
Z +

z∫
P

|Ω
) . (2.16)

Within Pich−1(Σ), the spin bundles can be identified as the bundles with
δ ∈ (1

2Z)h × (1
2Z)h. They can be divided into even and odd spin bundles,

depending on the parity of 4 δ′ · δ′′. Generically, the even spin bundles do
not admit any non-trivial global holomorphic sections, while the odd spin
bundles admit one non-trivial global holomorphic section. There is a close
relationship between the determinants of the Laplacians ∂̄†∂̄[δ] on a spin
bundle S[δ] and the θ-constant θ[δ](0|Ω). In genus h = 1, it is

det
(
∂̄†∂̄[δ]

)
=
∣∣∣∣θ[δ](0|Ω)

η(Ω)

∣∣∣∣2 , (2.17)

det′
(
∂̄†∂̄
)

[δ] = τ2
2 |η(Ω)|4 , δ =

[
1
2

1
2

]
, (2.18)
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where η(Ω) = q
1
24
∏∞
n=1(1 − qn), q ≡ e2πiΩ, all determinants are the

ζ-regularized product of all the eigenvalues, and det′ is the ζ-regularized
product of the strictly positive eigenvalues. In higher genus, similar rela-
tions hold between the determinants of the Laplacians on spin bundles, the
determinant of the Laplacian on scalars, and θ-constants.

The moduli space of Riemann surfaces is not a compact manifold. In the
limit when a homology cycle degenerates to a point, the Riemann surface
degenerates to a surface with nodes. What happens near degenerations is
crucial for both geometry and physics. In algebraic geometry, the Deligne–
Mumford compactificationMh ofMh is obtained by adding the divisor of
Riemann surfaces with nodes, and one tries to determine whether holomor-
phic sections on Mh extend to Mh, possibly with poles. In differential
geometry, one can study the asymptotic behavior of many canonical metrics
onMh in the region near the divisor of surfaces with nodes.

There are several natural metrics on the two basic bundles onMh, whose
fibers are, respectively, the space of holomorphic (1, 0)-forms and the space
of quadratic differentials. First, observe that the vector bundle H0(Σ,Λ1,0)
onMh carries the following metric

‖ω‖2 = i

∫
Σ

ω ∧ ω (2.19)

which is defined only in terms of the complex structure of Σ since ω∧ω is a
(1, 1) form. The Hodge bundle λ overMh inherits a corresponding metric

‖ω1 ∧ . . . ∧ ωh‖2 = det 〈ωI |ωJ〉 = det (ImΩIJ) , (2.20)

where the last equality on the right is a consequence of the Riemann identi-
ties. On the space of quadratic differentials, one can consider the L2 metric,
once one has made a choice of metric gij representing the complex structure.
One natural choice is the metric of constant scalar curvature, and the corre-
sponding metric on moduli space is called the Weil–Petersson metric. It is
known that the Weil–Petersson metric is Kähler, incomplete, and has nega-
tive Ricci and holomorphic sectional curvature [5,6,7]. Other distances arise
naturally from the realization of the Teichmüller space as a pseudoconvex
domain: they include the Caratheodory and the Kobayashi metrics, and the
Kähler–Einstein metric with negative Ricci curvature constructed by Cheng
and Yau [8] and Mok and Yau [9]. There has been considerable progress
recently in relating these metrics and determining their behavior near the
divisor of surfaces with nodes, see [10] for a comprehensive discussion.



Moduli in Geometry and Physics 357

3. The bosonic string

It is now easy to see why the moduli of Riemann surfaces should play a
major role in string theory. Strings are one-dimensional objects which span
in their evolution a surface Σ, called the world-sheet, inside space-time.
At the order h of perturbation theory, Σ is a surface of genus h. String
amplitudes receive contributions from fluctuations of the world-sheet, which
are parametrized in the Polyakov formulation by metrics gmk on Σ. A basic
principle of string theory is conformal invariance, that is, the contribution
of gmk depends only on its complex structure. Thus, after factoring out the
gauge group, string amplitudes should be given by integrals over the moduli
spaceMh.

The simplest string model is the bosonic string. Here space-time is a
Riemannian manifold (Xd, GMN ), and the world-sheet evolution is described
by a metric gmk on Σ, and d functions Σ : ξ → (xµ(ξ)) ∈ Xd, parametrizing
the world-sheet inside space-time. The action is

I(gij , x) =
1

4π

∫
Σ

d2ξ
√
ggk`∂kx

M∂`x
NGMN (x) . (3.1)

String amplitudes are given then by functional integrals〈
N∏
i=1

Vi

〉
≡
∫
Mh

∫
ΣN

Dgij

N∏
i=1

dξi
√
g(ξi)

∫
DxMe−I(gij ,x)

N∏
i=1

Vi (gkm, x(ξi)) (3.2)

where the Vi are vertex operators, that is, formally, random variables on the
measure space defined by DgijDxM . The principle of conformal invariance
implies that these amplitudes are expressible as〈

N∏
i=1

Vi

〉
=
∫
Mh

∫
Σh

ν(z1, . . . , zN ) , (3.3)

where ν is a (1, 1)-form in each zi, valued in the line bundle KMh
⊗KMh

on Mh. There is however an important subtlety: although the action
I(gkm, x) depends only on the complex structure of gmk, the functional
measure DgmkDxM does change under Weyl scalings. This is the famous
conformal anomaly [11]. So the principle of conformal invariance turns out
to hold only under two important conditions, namely that d = 26 and the
space-time metric Gµν is Ricci flat, which we assume henceforth.
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For simplicity, we shall restrict ourselves to the partition function
Z = 〈1〉, for strings evolving in flat Euclidian space-time, Xd = M25,1, GMN

is the corresponding Euclidian metric (the more realistic case of Minkowski
space is easily derived from the Euclidian case by analytic continuation.) In
this case, ν(z1, . . . , zN ) reduces to a section ν of KMh

⊗KMh
onMh, and

Z =
∫
Mh

ν . (3.4)

String perturbation theory can be viewed as the problem of determining ν
for all genus h.

This problem can be completely solved if we choose to represent complex
structures by their representative metrics ĝmk of constant scalar curvature.
In this case, the string volume form ν was shown in [12] to be

Z =
∫
Mh

Z ′(1)−13Z(2)ω3h−3
WP (3.5)

(up to a multiplicative constant ch depending only on the genus h, which
we ignore in this survey), and Z(s) is the Selberg zeta function, defined by

Z(s) =
∏

γ primitive

∞∏
k=1

(
1− e−(s+k)`γ

)
, (3.6)

where γ runs over all primitive closed geodesics on Σ, and `(γ) is the length
of γ with respect to the metric of constant scalar curvature. The asymptotics
of Z ′(1), Z(2), and ωWP in the degeneration limit have been obtained by
Wolpert [13] and Masur [14]. They confirm that the integrand in Z develops
a non-integrable singularity near the divisor of surfaces with nodes, which
is the geometric consequence of the physical fact that the spectrum of the
model contains a tachyon.

An alternative description of ν relies more fundamentally on the fact
thatMh is a complex manifold. It is a classic result of Mumford [15] that
K(M)⊗λ−13 is flat, and Belavin and Knizhnik [16] showed that ν is simply
the square of the norm of a global holomorphic section s of K(M)⊗ λ−13,
with respect to the canonical metric on the Hodge bundle λ−13,

ν = ‖s‖2λ−13 (3.7)

which is then a positive section of K(M)⊗K(M), and hence a volume form
onMh. More explicitly, if we fix a canonical homology basis (AI , BI), the
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dual basis ωI of holomorphic differentials provide a trivialization ω1∧. . .∧ωh
of the Hodge bundle λ. If we express s locally as

s = (ω1 ∧ . . . ∧ ωn)−13 ⊗ dµB(Ω) , (3.8)

with dµB(Ω) a local section of KM, and make use of the formula (2.20),
then we obtain the following more explicit expression for ν

ν = det−13(ImΩIJ) dµB(Ω) ∧ dµB(Ω) . (3.9)

The presence of a tachyon in the spectrum of the bosonic string gets an
even simpler interpretation in this complex formalism: from the Riemann–
Roch theorem, it follows that the section s is non-vanishing and regular in
Mh, but onMh, it develops a pole of order 2 along the divisor of Riemann
surfaces with nodes. The power of the complex structure of strings has been
particularly emphasized by Friedan and Shenker [17].

In general, h = 2 and h = 3, the section ν can be written down com-
pletely explicitly in terms of θ-constants [18, 19], thanks largely to a good
understanding of modular forms in these cases. In a sense, this corresponds
to the expression (3.5) of ν in terms of special values of the Selberg zeta func-
tion, with the crucial advantage that θ-constants are manifestly holomorphic
onMh. It remains an open problem to this day to determine whether this
can be done for higher genera. This could help considerably the study of
superstring perturbation theory which we discuss in the next section. We
note that expressions of ν in terms of θ-functions with additional points on
the surface have been obtained by many authors, using e.g. bosonization
formulas. But the presence of these additional points limits the applicabil-
ity of these expressions, as their modular transformation properties are then
hard to see.

4. Moduli of Riemann surfaces and super Riemann surfaces

Because of the tachyon and the ensuing divergences, the bosonic string is
by itself an ill-suited candidate for a realistic unified string theory. A cure is
obtained by adding fermionic degrees of freedom on the world-sheet Σ, and
by imposing local supersymmetry. Thus a new geometric structure emerges,
that of two-dimensional supergeometries. It is the co-existence of this new
structure with the classical complex structures which underlie much of su-
perstring perturbation theory. We discuss now these issues in greater length.

4.1. Two-dimensional supergeometries

Let Σ be a smooth oriented compact surface as before, and fix now
a spin structure δ. A two-dimensional supergeometry is a pair (ema, χmα),
where em

a is a local frame. We can view em
a as defining a metric
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gmk = em
aek

bδab on Σ, and the “gravitino field” χmα as a section of
Λ1,0(Σ) ⊗ S, where S is a spin bundle. The groups of infinitesimal diffeo-
morphisms, local Weyl, and local U(1) acts on the space of two-dimensional
supergeometries in the usual way they act on tensors and spinors. The
novel feature of two-dimensional supergeometries is that they carry three
more actions, namely local supersymmetry

δem
a = δζγaχm , δχm

α = −2∇mδζα (4.1)

generated by a spinor δζa, and local super Weyl and super U(1) transfor-
mations. A supergeometric structure, or super Riemann surface, is then
defined to be an equivalence class of supergeometries, modulo the above
actions. The supermoduli space ∫Mh is by definition the space of all super-
geometries. Thus

sMh = {(ema, χmα)}/sDiff ×Diff ×Weyl× sWeyl× sU(1) . (4.2)

The Riemann–Roch theorem gives the dimension of sMh,

dim sMh = (3h− 3|2h− 2) if h ≥ 2 , (4.3)

where (m|n) indicates m bosonic degrees of freedom and n Grassmann de-
grees of freedom. For h = 0, dim sMh = (0|0), and for h = 1, dim sMh =
(1|0) or (1, 1), depending on whether the spin structure δ is even or odd.

There is a very suggestive interpretation of this structure in terms of
superspace. In the superspace formalism, we consider a super surface sΣ
whole local coordinates z = (zM ), M = (m,α) are given by zm = (z, z̄),
zα = (θ, θ̄), with θ an anti-commuting parameter. A supergeometry cor-
responds to a frame EA = dzMEM

A, and a U(1) superconnection Ω =
dzMΩM satisfying the Wess–Zumino torsion constraints

Tab
c = Tαβ

γ = 0 , Tαβ
c = 2(γc)αβ , (4.4)

where the torsion TAB
C and curvature RAB are defined by [DA,DB] =

TAB
CDC + inRAB, DAV = EA

M (∂MVB + inΩMV ) is the covariant deriva-
tive on fields V of U(1) weight n, and γc are two-dimensional Dirac matrices.
The group sDiff(Σ) acts on supergeometries by

δEM
A = EM

A
(
DA(δV )B − δV CTCA

B + δV CΩCEA
B
)
. (4.5)

In Wess–Zumino gauge, defined by Eµα ∼ δµ
α + θνe∗ανµ, Eµa ∼ θνe∗∗aνµ , the

component Ema can be expanded as

Em
a = em

a + θγaχm −
i

2
θθ̄em

aA . (4.6)
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The field A turns out to have no dynamics and can be set to 0. Thus the su-
pergeometry (EMA, ΩM ) in the superspace formalism can be identified with
the supergeometry (ema, χmα) in the component formalism. Furthermore,
decomposing the vector superfield δVM into components δvm and δζα, the
transformations (4.5) decompose correspondingly into local diffeomorphisms
and local supersymmetry (4.1).

4.2. Superholomorphicity

A supergeometry endows the super Riemann surface sΣ with a structure
analogous to and as rich as a complex structure on a surface. Recall that the
local coordinates on sΣ are (z, θ). A super 1/2-form on

∑
Σ is a form of the

type ω̂ = θ ω+(z) + ω0(z), where ω+(z) and ω0(z) are forms on Σ of U(1)
weights 1 and 1/2 respectively. In analogy with line integrals of 1-forms on
Riemann surfaces, we can define the line integrals of super 1/2-forms by

z∫
P

ω̂ =

z∫
P

(
dz ω+ − 1

2dz̄ χ
+
z̄ ω̂0

)
+ θzω0(z)− θP ω̂0(P ) . (4.7)

A supergeometry defines a notion of superholomorphic forms: a form ω̂(z)
is superholomorphic if it satisfies the equation

∂zω0 + 1
2χ

+
z̄ ω+ = 0 , ∂z̄ω+ + 1

2∂z(χ
+
z̄ ω0) = 0 . (4.8)

The line integrals
∮
C ω̂ depend then only on the homology class of C. Generi-

cally, the space of odd superholomorphic forms is of dimension h for a surface
of genus h, and we can define the super period matrix Ω̂ by

Ω̂IJ =
∮
BI

ω̂J . (4.9)

The super period matric Ω̂ can be viewed as a supersymmetric correction of
the period matrix defined by the metric gij . Define a modified Szegö kernel
Ŝδ(z, w) by

∂z̄Ŝδ(z, w) +
1

8π
χ+
z̄

∫
d2uχū

+∂z∂u lnE(z, u)Ŝδ(u,w) = 2πδ(z, w) , (4.10)

where E(z, u) is the prime form, and ∂z∂u lnE(z, u) the meromorphic form
in z with double pole at u and zero A periods. Then Ω̂ can be expressed as

Ω̂IJ = ΩIJ −
i

8π

∫
d2zd2wωI(z)χ+

z̄ Ŝδ(z, w)χ+
w̄ωJ(w) . (4.11)
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Note that, since χ+
z̄ is a Grassmann variable, the modified Szegö kernel

can be expanded into a finite series in χ+
z̄ , starting with the Szegö kernel

Sδ(z, w), which is the Green’s function for the ∂̄ operator on spinors,

∂z̄Sδ(z, w) = 2πδ(z, w) . (4.12)

This results into a similar expansion for Ω̂, starting with Ω.

4.3. Construction of superstring scattering amplitudes

Two-dimensional geometries play the same role in the construction of
superstrings as two-dimensional geometries play in the construction of the
bosonic string. We restrict to Minkowski space-time, and fix a spin bundle
S[δ]. The evolution of the superstring in space-time is governed by the action

I(gmk, χmα) =
1

4π

∫
Σ

d2z
(
∂zx

µ∂z̄x
µ − ψµ+∂zψ

µ
+ − ψ

µ
−∂zψ

µ
−

+χ+
z̄ ψ

µ
+∂zx

µ + χz
−ψ−∂zx

µ − 1
2χ

+
z̄ χz

−ψµ+ψ
µ
−
)
, (4.13)

where the fields ψµ+ are sections of S[δ], and are the supersymmetric partners
of the scalar fields xµ, just as the gravitino field χ+

z̄ was the supersymmetric
partner of the metric gmk. The action (4.13) is that of two-dimensional
supergravity, coupled to the d matter superfields (xµ, ψµ+, ψ

µ
−). It is invariant

under the same symmetries as for (ema, χma), and in particular under Weyl
and super Weyl scalings, diffeomorphisms, and local supersymmetry.

We describe now the construction of superstring scattering amplitudes.
It starts from the following functional integral, defined for any fixed spin
structure δ,

A[δ] =
∫
DEM

ADΩM

∫ N∏
i=1

d2|2ziE(zi)

∫
DXµe−Im

N∏
i=1

V (zi, z̄i; εi, ε̄i, ki) . (4.14)

Here d2|2zE(z) is the volume form on sΣ, and is given by d2|2zE(z) =
dθ̄∧ez∧dθ∧ez, with ez = dz− 1

2θχ
+
z̄ dz̄. The random variable V (z, z̄; ε, ε̄, k)

is the vertex for the emission of a particle of momentum k and polarization
thensor ε. We shall discuss only the vertices for the emission of a particle in
the graviton multiplet. The fundamental assumption of superstring theory,
to be proven, is that for each spin structure δ, the amplitude A[δ] can be
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expressed as

A[δ] =
∫
dpµI

∫
Mh×ΣN

H[δ]
(
zi; ki; εi; p

µ
I

)
∧H[δ]

(
zi; ki; εi; p

µ
I

)
, (4.15)

where H[δ] is holomorphic in both moduli and insertion points zi. We refer
to a statement of the form (4.15) as a holomorphic splitting of the ampli-
tude A[δ]. The superstring amplitude would then be defined by

AII(ki; εi) =
∫
dpµI

∫
Mh×ΣN

∑
δδ̄

εδ,δ̄H[δ]
(
zi; ki; εi; p

µ
I

)
∧H[δ]

(
zi; ki; εi; p

µ
I

)
(4.16)

with a suitable choice of phases εδ,δ̄. There should be only two possible
inequivalent choices of such phases, differing in the relative signs between
the contributions of odd and even spin structures, leading to the Type IIA
and the Type IIB superstrings.

The prescription of splitting holomorphically the functional integral A[δ]
is the analogue for Euclidian signature of the prescription of taking ψ+ to
be Majorana–Weyl spinors for Minkowski signature. The prescription of
summing over the spin structures δ, δ̄ is the Goddard–Kent–Olive, or GKO
prescription. Its role is to truncate the spectrum of the superstring and
eliminate the tachyon. It is one of the striking features of superstring theory
that this prescription produces a space-time supersymmetric theory.

4.4. Holomorphicity and superholomorphicity

The main problem of superstring perturbation theory is to establish the
existence of the holomorphic splitting (4.15), and evaluate the holomorphic
blocks H[δ]. We describe here what is known as well as some of the key
difficulties.

• The first step is to factor out all the gauge symmetries, and reduce
the functional integrals A[δ] to finite-dimensional integrals. This can
be done by the standard Faddeev–Popov gauge-fixing procedures of
quantum field theory [4]. The amplitude A[δ] is reduced to an integral
over the quotient space of all supergeometries by all symmetries, which
is by definition the supermoduli space sMh (in presence of vertex
insertions, the integral is over sMh × sΣN ). Note that integrals over
supermoduli space incorporate integrals over 2h− 2 fermionic degrees
of freedom.
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• The integrals over supermoduli space obtained by gauge-fixing turn out
to have a lot of structure. The chiral splitting theorem of [20] asserts
that their integrands can be split into superholomorphic sections,

A[δ] =
∫
dpI

∫
sMh×(sΣ)N

N∏
i=1

d2|2ziE(zi)

∣∣∣∣∣∣
3h−3|2h−2∏

A=1

dmAF [δ](zi; ki, εi; pI)

∣∣∣∣∣∣
2

. (4.17)

Here mA are local coordinates for sMh, and F [δ] is superholomorphic
in each variable zi away from coincident points zi = zj for i 6= j.

• Comparing the preceding expression with the desired expression (4.15),
we see that the 2h− 2 Grassmann degrees of freedom of supermoduli
space need to be integrated out, and that the main problem now is how
to extract holomorphic forms on moduli space from superholomorphic
forms on supermoduli space.

The difficulty is that, for a general supergeometry, the notions of holo-
morphicity and superholomorphicity do not appear directly related. If
χmα = 0, then the superholomorphicity of the 1/2 differential ω̂ = θω+ω+ is
equivalent to the holomorphicity of ω and of ω+ with respect to the complex
structure defined by gmk. However, the condition χmα = 0 is not invari-
ant under supersymmetry, and even this relation in this particular case is
not well-defined. For general χmα, there does not even appear to be any
candidate for a relation between the two notions.

This is the difficulty that was overcome in [21] in the case of genus h = 2.
The basic idea is to consider the complex structure defined by the super
period matrix Ω̂. The relation between superholomorphicity with respect to
(ema, χmα) and holomorphicity with respect to Ω̂ turns out to be encoded
in a beautiful hybrid cohomology theory, mixing de Rham and Dolbeault
cohomology. The simplest example of this is the following relation between
superholomorphic 1/2-forms ω̂(z, θ) and forms 1-forms ω(z) holomorphic
with respect to Ω̂,∫

dθ ∧ ez ω̂(z, θ) = dz ω(z) + dλ(z) , (4.18)

where λ(z) is a smooth and globally defined scalar function. Similar rela-
tions were established for more complicated objects, such as the correlation
functions of scalar superfields. More specifically, a deformation of complex
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structures to local holomorphic coordinates with respect to Ω̂ and an inte-
gration of the Grassmann variables gives

A[δ] =
∫
dpI

∫
M2×ΣN

∣∣∣∣B[δ] (zi; ki, εi; pI)
∣∣∣∣2 (4.19)

for some forms B[δ]. Then the most important property of the form B[δ] is

∑
δ

B[δ]
(
zi; ki, εi; p

µ
I

)
−

N∑
j=1

dz̄j∂z̄jSj (zi; ki, ε; pmI u) = H
(
zi; ki; p

µ
I

)
(4.20)

with H a holomorphic (1, 0)-form in each zi. Here we have restricted the
number of insertions is N ≤ 4, and the summation is only over even spin
structures δ, because only even spin structures contribute to the superstring
amplitudes for N ≤ 4 at this order of perturbation theory. All the relative
phases εδ,δ′ in (4.15) can be taken to be 1, and the holomorphic form H can
be equated with the desired form

∑
δH[δ] there. All the resulting expressions

can be evaluated explicitly in terms of θ-constants. We obtain in this manner
the following final answer for the superstring measure

A =
∫
M2

det(ImΩ)−5
∑
δ,δ′

dµ[δ](Ω) ∧ dµ[δ′](Ω) (4.21)

with the contribution dµ2[δ] of each spin structure δ given by

dµ2[δ] =
1

16π2

Ξ6[δ](Ω)θ[δ](Ω)4

Ψ10(Ω)

∏
I≤J

dΩIJ . (4.22)

Here Ψ10(Ω) =
∏
δ even θ[δ](Ω)2, and the key new form Ξ6[δ](Ω) is given by

Ξ6[δ](Ω) =
∑

1≤i<j≤3

〈νi|νj〉
∏

k=4,5,6

θ[νi + νj + νk]4(Ω) . (4.23)

The sum over δ of dµ[δ] vanishes identically over moduli space. This can
be viewed as the generalization to genus h = 2 of the Jacobi identity for
θ constants, and a manifestation of space-time supersymmetry. For the
4-point function, we obtain

A(k1, ε1; . . . ; k4, ε4) =

KK̄

212π4

∫
M2×Σ4

|
∏
I≤J dΩIJ |2

(det ImΩ)5
|YS ||2exp

−∑
i<j

ki · kjG(zi, zj)

 . (4.24)
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Here ki are the momenta of the gravitons, εi are their polarization tensors,
K, K̄ are kinematic invariants depending on the ki and εi, G(zi, zj) is the
conformally invariant Green’s function

G(z, w) = − ln |E(z, w)|2 + 2π

ImΩ−1
IJ

Im

w∫
z

ωI

Im

w∫
z

ωJ

 (4.25)

and YS is the following form in the variables zi

3YS = (k1 − k2) · (k3 − k4)∆(z1, z2)∆(z3, z4)
+(k1 − k3) · (k2 − k4)∆(z1, z3)∆(z2, z4)
+(k1 − k4) · (k2 − k3)∆(z1, z4)∆(z2, z3) , (4.26)

with the form ∆(z, w) defined by

∆(z, w) = ω1(z)ω2(w)− ω1(w)ω2(z) . (4.27)

4.5. Ansatze from factorization constraints

The derivation of scattering amplitudes to all orders of perturbation
theory can already be technically very involved for field theories. As we have
seen, string theories present formidable additional geometric difficulties. An
old idea is to circumvent a derivation from first principles, and construct the
amplitudes instead by the constraints of unitarity and factorization. This
still proved to be prohibitively difficult in the past. However, with the new
insights gained from the explicit formulas for the genus 2 amplitudes, it
was proposed in [22] to try this approach anew, by incorporating this time
suitable generalizations of the modular properties of the genus 2 amplitudes.
Thus an Ansatz for the genus h superstring measure is of the form

A =
∫
Mh

det(ImΩ)−5
∑
δ,δ′

dµ[δ](Ω) ∧ dµ[δ′](Ω) (4.28)

with dµ[δ](Ω) given by

dµ[δ](Ω) = dµB(Ω)Ξ[δ](Ω) , (4.29)

where dµB(Ω) is the bosonic string volume form, and Ξ[δ] a generaliza-
tion of the genus 2 expression in θ-constants, to be determined by suitable
modularity and factorization constraints. The first breakthrough in this line
of investigation was due to Cacciatori, Dalla Piazza, and van Geemen [23],
who found a striking candidate for the superstring measure in genus 3, and
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showed that it was unique. This led to rapid progress in several directions,
including a generalization to all genera by Grushevsky [24] of the modular
forms of the types found in genus 2 and 3, and the identification of the genus
4 superstring measure by Grushevsky, Cacciatori, Dalla Piazza, van Geemen,
and Salvati Manni and their collaborators [25]. A considerable simplifica-
tion and synthesis of these developments, including a historical perspective
of attempts from the early 1980s to find the superstring measure, was given
by Morozov [26]. However, starting from genus 5, new difficulties with such
generalizations were uncovered by Matone and Volpato [27]. A lucid dis-
cussion can be found in [27], as well as in the paper of Dunin-Barkowski,
Morozov, Sleptsov [28]. The surrounding questions about modular forms
and θ functions seem to have many ramifications (see e.g. [29]), and to be
of great interest in their own right.

An alternative approach to superstring theory, which avoids the summa-
tion over spin structures and can recover the perturbative results described
above to two-loops, is the pure spinor formalism developed by Berkovits and
co-authors [30].

5. Moduli space of target manifolds

In the preceding section, we discussed the problem of evaluating scat-
tering amplitudes for superstrings in 10-dimensional Minkowski space-time.
The known physical world suggests that space-time should be instead of the
form X = M1,3×K, where K is a compact manifold so tiny that it has not
been detected at presently available energy levels. The conformal invariance
of the quantized theory requires that the dimension of X still be 10, so that
the dimension of K is 6. It also requires that the metric Gµν of X be Ricci-
flat. But there are further conditions that can be imposed on X that are
desirable from the point of view of phenomenology, and which turn out to
be also geometrically attractive. We discuss these briefly now.

5.1. Supersymmetry and Calabi–Yau

Although we have described so far the Type IIA and Type IIB super-
string theories, the theory whose compactification received the greatest at-
tention is the heterotic string. The heterotic string is a hybrid combination
of the left-moving sector of the superstring, with the right-moving sector of
the bosonic string in 26 dimensions, with 16 dimensions compactified to a
torus R16/2πΓ , where Γ is the root lattice of E8 × E8 or of SO(32)/Z2.
The resulting low-energy theory is N = 1 supergravity coupled to N = 1
super Yang–Mills theory, with E8 × E8 or SO(32)/Z2 gauge group.

An early and very influential Ansatz for compactification was put forth
by Candelas, Horowitz, Strominger, and Witten [31]. A key requirement was
to preserve N = 1 supersymmetry for the effective 4-dimensional theory,
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which was expected to help address the famous gauge hierarchy problem.
Together with taking the product metric in M1,3 × K (in physical terms,
setting this dilaton field to be constant), and taking the gauge field to be an
SU(3) connection on K, they showed that K should be a Calabi–Yau 3-fold,
that is, a Kähler 3-manifold with SU(3) holonomy. A more general Ansatz,
still preserving the N = 1 supersymmetry of the effective 4-dimensional
theory, but relaxing the product metric on M1,3 ×K to a warped product
metric, was subsequently proposed by Strominger [32]. The Strominger
system of equations is for a complex Hermitian 3-manifold (X,ω) with a
non-vanishing holomorphic 3-form Ω, curvature R, and a vector bundle E
with curvature F , satisfying the following

F 2,0 = F 0,2 = 0 , (5.1)
F ∧ ω2 = 0 , (5.2)

i∂∂̄ω =
α′

4
(TrR ∧R− TrF ∧ F ) , (5.3)

d∗ω = i(∂̄ − ∂) ln ‖Ω‖ . (5.4)

Note that the first condition means that E is a holomorphic vector bundle.
The second condition means that the metric on E is Hermitian–Einstein,
which is the vector bundle generalization of the Ricci-flat condition. Thus ω
Kähler, F = R, with (X,ω) a Calabi–Yau 3-fold is a special solution, and the
Strominger system can be viewed as a generalization to a non-Kähler setting
of the Ricci-flat equation solved by Yau [33] and of the Hermitian–Einstein
equation solved by Donaldson [34] and Uhlenbeck–Yau [35].

5.2. Chern numbers of moduli of CY

The moduli space of solutions to the Strominger system (5.1) can be
viewed as the moduli space of supersymmetric vacua for superstring theory.
Within this moduli space is the moduli space of Calabi–Yau 3-folds, and
moduli theory plays again a prominent role in theoretical physics.

The moduli space of Calabi–Yau is a rich subject. It is impossible to do it
justice in a short article, and we shall limit ourselves to quoting a few results.
In parallel with the moduli space of Riemann surfaces, it comes naturally
equipped with a Weil–Petersson geometry. More precisely, the analogue of
the Hodge bundle λ is given now by the bundle of the holomorphic 3-form
Ω, equipped with the natural metric

‖Ω‖2 =
∫
X

Ω ∧Ω . (5.5)
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The Weil–Petersson metric is the curvature of this bundle

ωWP = −i∂∂̄ log ‖Ω‖2 . (5.6)

The curvature of the Weil–Petersson metric itself on the moduli space of
Calabi–Yau has been determined by Strominger. In particular, its curvature
is negative. Because the moduli space is open (Calabi–Yau manifolds can
degenerate), and because it is not known how to compactify it, even the
finiteness and rationality of its characteristic numbers is not easy to see and
has been established only recently by Lu and Sun [36] and Douglas and
Lu [37]. On the other hand, there has been considerable progress in many
directions motivated by the remarkable phenomenon of mirror symmetry,
for which we refer to the collection [38] of survey books.

5.3. Solutions of Strominger systems

By contrast, it is only recently that non-Kähler solutions of the Stro-
minger system were found. The first non-trivial solutions were found by
Li and Yau [39] as perturbations of Calabi–Yau 3-folds, and the first solu-
tions on manifolds that do not admit a Kähler structure were found, non-
perturbatively and rather recently, by Fu and Yau [40]. The moduli theory
of Strominger systems is still in its infancy. But Strominger systems are un-
doubtedly a very natural and deep generalization of Calabi–Yau manifolds,
and they will undoubtedly play a major role in complex geometry.

6. Moduli of meromorphic differentials
and Seiberg–Witten theory

A rather unexpected emergence of moduli theory occurs in the Seiberg–
Witten effective solution of N = 2 supersymmetric gauge theories in 4 di-
mensions.

6.1. N = 2 supersymmetric gauge theories

In 4-dimensions, the constraints of N = 2 supersymmetry are so pow-
erful that the N = 2 supersymmetric Yang–Mills theory is completely de-
termined by the field content. The N = 2 pure gauge multiplet consists
of (Aµdxµ, φ, λ, ψ), φ a scalar, λ and ψ spinors, all valued in the adjoint
representation of the gauge group G. The bosonic part of the action is

I = − 1
2g2

TrF ∧ ∗F − θ

16π2
TrF ∧ F − 1

2g2
TrDµφ

†Dµφ+
1

2g2
Tr
[
φ†, φ

]2
.

(6.1)
The theory can be coupled to an N = 2 hypermultiplet, all fields of which
lie in a representation R of G.
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The vacua of the theory are given by Fµν = 0, constant fields φ, Dµφ = 0,
with [φ, φ†] = 0. Thus they can be expressed as

φ̄ =

 ā1 · 0
0 ā2 0
0 · āN

 , (6.2)

where N is the rank of the gauge group, and
∑N

i=1 āi = 0. While the N = 2
supersymmetry is unbroken, the gauge symmetry is spontaneously broken
to gauge fields commuting with φ̄, and we obtain a theory of N interacting
N = 2 supersymmetric U(1) gauge fields Aj . Again by supersymmetry, the
effective action for these U(1) fields must be of the form

Ieff = 1
4 Im(τij)Fi ∧ ∗Fj + 1

4Re(τij)Fi ∧ Fj + dφ̄j ∧ dφDj + fermions .(6.3)

Here Fj is the curvature of Aj , φj is the scalar field in the multiplet of
the gauge field Aj , and φDj is the dual gauge scalar. Furthermore, the
effective gauge coupling τij and the dual scalar φDj are determined by a
single holomorphic function F(φ,Λ), called the prepotential

τij =
∂2F
∂φi∂φj

(φ,Λ) , φDj =
∂F
∂φj

(φ,Λ) . (6.4)

Here Λ is a scale introduced by renormalization. For scale invariant theories,
it is replaced by the microscopically well-defined parameter τ = θ

2π + 4πi
g2

.

6.2. Effective actions and the Seiberg–Witten Ansatz

The moduli space of classical vacua is the trivial space S of configurations
φ̄ of the form (6.2). Unexpectedly, a rich moduli theory of complex geometric
structures enters through the effective quantum theory, and the striking
Ansatz of Seiberg and Witten [41]: according to this Ansatz, the effective
prepotential F can be obtained from a fibration of Riemann surfaces Γ
over S, each equipped with a meromorphic differential dλ, and

∂F
∂aI

= aDI , (6.5)

where aJ and aDJ are the periods of dλ along a basis of canonical homology
cycles (AI , BI)

aI =
∮
AI

dλ , aDI =
∮
BI

dλ . (6.6)
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The correct fibration for a given N = 2 supersymmetric gauge theory is
determined by the requirement that, in the low-energy regime of Λ small,
we must have

F(a, Λ) ∼ − 1
8πi

 ∑
α∈R(G)

(a · α)2 ln
(a · α)2

Λ2

−
∑

λ∈W (R)

(λ · a+m)2 ln
(λ · a+m)2

Λ2

 (6.7)

up to a series in powers of Λ, which represents the contributions of instan-
tons. For example, in the original Seiberg–Witten solution of the SU(2)
pure Yang–Mills theory, the fibration Γ is given by the elliptic curves with
differential dλ

y2 =
2∏
j=1

(x− āj)2 − Λ2 , dλ =
x

y
d

2∏
j=1

(x− āj) . (6.8)

The Ansatz of Seiberg–Witten has now been explained from several points
of view, including branes by Witten [42], and it has also been derived from
first principles by Nekrasov [43].

6.3. Moduli of Riemann surfaces and Abelian integrals

Very early on, it was observed by Gorsky et al. [44] that the surfaces Γ
and form dλ in the Seiberg–Witten solution of the SU(2) theory coincided
with the solution of the Whitham hierarchy for the SU(2) Toda lattice. This
correspondence between Seiberg–Witten theory and integrable models was
exploited in the solution by Donagi andWitten [45] of the SU(N) theory with
matter in the adjoint representation. It was developed subsequently more
fully by [45,46,48,49], and others (see [50] for a more extensive bibliography).
Here we shall concentrate on the viewpoint developed in [48], as it leads as
yet to another moduli space of complex structures.

The key underlying idea in the construction of [48] is motivated by the
theory of integrable models, where integrability is just the commutativity
of two operators, with two corresponding sets of eigenvalues. Thus it is
natural to introduce the moduli space of (Γ,E(z), Q(z)), where E(z) and
Q(z) are Abelian integrals of given poles. More precisely, fix a smooth
surface Σ of genus h, with a marked point p, and integers n 6= 0,m. If
E(z) is an Abelian integral with pole of order n at p, then the equation
E(z) = z−n + (RespE) log z defines a holomorphic coordinate near p. Let
Mh(n,m) be the moduli space of triples (Γ,E,Q), where Γ is a complex
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structure on Σ, and E,Q are Abelian integrals with poles of order n,m at p.
As Abelian integrals, E(z), Q(z) are defined only on a surface cut open along
homology cycles, but all final expressions will end up independent of such
choices. Set

dλ = EdQ . (6.9)

ThenMh(n,m) has dimension 5h+n+m, and the open set where the divi-
sors {z, dE = 0} and {z; dQ = 0} admit the following natural coordinates:

• the n+m pole coefficients in the Laurent expansion of dλ near p;

• the 4h periods of dE and dQ;

• the A periods aI =
∮
AI
dλ of the differential dλ.

If we fix all the coordinates except for the periods aI , we obtain a folia-
tion of the moduli spaceMh(n,m), the leaves of which are precisely of the
dimension of the genus. It is shown in [48] that the leaves of this foliation
coincide precisely with the moduli spaces for the Seiberg–Witten solution of
the SU(N) gauge theory with hypermultiplets in the fundamental represen-
tation. This is a more systematic generalization of the original observation
of Gorsky et al. [44], and establishes a direct link between Seiberg–Witten
solutions and the Whitham theory, as developed earlier by Flaschka, Forrest,
McLaughlin [51] and Krichever [52].

In general, the fibration of Riemann surfaces may degenerate to surfaces
with nodes along certain divisors inside S, so the quantum moduli space is
now a space with highly non-trivial geometry. In fact, both the geometry
and the physics of the theory near these degeneration points is of consider-
able interest. However, it has not been fully elucidated as yet, even for the
simplest gauge theories as above, where the fibration (Γ,E,Q) is relatively
simple and known explicitly. This problem of describing the prepotential
near the degeneration points can be expected to become even more chal-
lenging for the solutions of more sophisticated models. These include the
N = 2 pure Yang–Mills with arbitrary simple gauge group [46, 47], and the
N = 2 Yang–Mills with matter in the adjoint representation, solved in the
case of SU(N) with a Hitchin system in [45], and in the case of arbitrary G
with a twisted Calogero–Moser system in [49].
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6.4. Symplectic forms

Essentially from the beginning, Seiberg and Witten [41] and Donagi and
Witten [45] had stressed that the fibration Γ led to a natural symplectic
structure on the fibration with the symmetric product Symh(Γ ) as fiber

ω =
h∑
I=1

δ(dλ(zI)) , (z1, . . . , zh) ∈ SymhΓ , (6.10)

and that this symplectic structure sufficed to determine the quantum pre-
potential F . (Here we have denoted by δ the exterior differential in all
variables, including the base variables, to distinguish from the differential d
on each curve Γ .) Since a relation had been found between Seiberg–Witten
fibrations and fibrations from integrable models as described in the pre-
vious section, it is natural to ask whether there exists a relation between
the symplectic forms from the Seiberg–Witten fibrations and the Lax pairs
from integrable models. The answer turned out to be affirmative, and the
following formula was found in [48]

ω = Resk=∞

〈
ψ†(z, k)δL ∧ δψ(z, k)

〉
, (6.11)

where L is the usual operator in the Lax pair, and ψ(z, k) is the Baker–
Akhiezer function. A fuller description of these notions can be also found
in [48]: roughly speaking, the phase space is the space of all Lax operators
L, ψ(z, k) can be viewed as a function on this space, and δ the exterior
differential on it, so that ω is a 2-form. As an unexpected by-product,
this formulation of symplectic forms led to a new Hamiltonian theory of
integrable models [48], based on the Lax pair directly instead of on the
R-matrix, as had been developed by Faddeev and Takhtajan [53]. The new
Hamiltonian formulation applies to even 2+1 integrable models, a convenient
Hamiltonian formulation of which had not been available. We refer to [48]
for a detailed discussion.

7. Moduli and canonical metrics

We conclude this survey with a brief discussion of the problem of moduli
and canonical metrics. It may happen that a given geometric structure may
admit a representative metric with “best” curvature properties. In this case,
we refer to such a metric as a “canonical metric”, and the moduli space
of geometric structures can be identified with a moduli space of canonical
metrics. We have encountered canonical metrics all along these lectures.
For a complex structure on a surface, a canonical metric is a metric of
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constant curvature. For a holomorphic vector bundle E → (X,ω), where ω
is a Kähler form, a canonical metric H = (Hᾱβ) is a metric satisfying the
Hermitian–Einstein equation,

gjk̄Fk̄j
α
β = µ δαβ , (7.1)

where Fk̄j = −∂k̄(H−1∂jH) is the curvature of Hᾱβ . For a Kähler manifold
X with definite first Chern class, a canonical metric gk̄j is a Kähler–Einstein
metric

Rk̄j = µ gk̄j , (7.2)

where µ is ±1 or 0, depending on the sign of the first Chern class or whether
it vanishes. Note that the Kähler–Einstein condition can be viewed as a
more non-linear version of the Hermitian–Einstein condition, when E =
T 1,0(X), and gk̄j = Hᾱβ is also unknown. Clearly, the Kähler–Einstein
equation is an Euclidian version of the Einstein equation in general relativity.
Both Hermitian–Einstein and Kähler–Einstein equations appeared in the
compactification of the heterotic string, as we saw earlier.

The existence of a Hermitian–Einstein metric on a holomorphic vector
bundle E was shown by Donaldson [34] and Uhlenbeck–Yau [35] to be equiv-
alent to the stability of E in the sense of Mumford–Takemoto. The existence
of a Kähler–Einstein metric on a Kähler manifold was shown, respectively,
by Yau [33] in the case of vanishing first Chern class (this is the famous Cal-
abi conjecture, and the foundation of the theory of Calabi–Yau manifolds),
and by Yau [33] and Aubin [54] in the case of negative first Chern class.

The case of Kähler–Einstein metrics for positive first Chern class is still
open at this time. A classic conjecture of Yau [55] says that the existence
of such a metric should be equivalent to the stability of X in the sense of
geometric invariant theory. In fact, this conjecture extends to a broader
question of which Kähler–Einstein metrics is only one example: let L→ X
be a positive holomorphic line bundle over a compact complex manifold X.
When does there exist a metric ω ∈ c1(L) with constant scalar curvature?
Note that when L = K±1

X , the constant scalar curvature condition is actually
equivalent to the condition of constant Ricci curvature, so this question
is indeed a generalization of the question about the existence of Kähler–
Einstein metrics. In this more general context, the conjecture of Yau would
assert that the existence of a metric in c1(L) with constant scalar curvature
should be equivalent to the stability of the line bundle L→ X in the sense of
geometric invariant theory. Specific notions of stability have been formulated
by Tian [56] and Donaldson [57,58]. These notions do not fit entirely in the
most traditional framework of geometric invariant theory, nevertheless, it



Moduli in Geometry and Physics 375

can be hoped that they will lead to a well-behaved, Hausdorff moduli space
of stable line bundles over X, just as stable curves led to a well-behaved,
Hausdorff moduli of curves.

It is instructive to write down explicitly the equation for a metric in
c1(L) with constant scalar curvature. Fix a reference metric g0

k̄j
in c1(L),

and look for gk̄j in c1(L) under the form gk̄j = g0
k̄j

+ ∂j∂k̄ϕ. Then the Ricci
curvature Rk̄j of the metric gk̄j is given by Rk̄j = −∂j∂k̄ log det(gq̄p), and
hence the constant scalar curvature equation is

− gjk̄∂j∂k̄ log det
(
g0
q̄p + ∂p∂q̄ϕ

)
= A . (7.3)

This is a fourth-order equation in ϕ, which combines intriguingly basic fea-
tures of a fully non-linear equation such as the Monge–Ampère equation, and
a quasi-linear equation such as the minimal surface equation. The necessity
of several notions of stability for the existence of constant scalar curvature
metrics has been established by Tian [56], Donaldson [59], and Stoppa [60]
in different situations. The sufficiency of K-stability has been established
by Donaldson for two-dimensional toric varieties. For recent progress on the
Kähler–Einstein problem for positive first Chern class, see [61]. A survey of
various developments around this problem can be found in [62].

The problem of moduli of positive line bundles and constant scalar scalar
curvature Kähler metrics is currently a very active research area in differ-
ential geometry and partial differential equations. It does not seem to have
emerged as yet in theoretical physics, except of course for the well-known
cases of Hermitian–Einstein and Kähler–Einstein metrics. However, if past
history is any guide, it may reveal itself someday to be closely related to
some important problems from physics.

The author would like to thank Zhiqin Lu and Valentino Tosatti for
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