
Vol. 4 (2011) Acta Physica Polonica B Proceedings Supplement No 3

QUANTUM GRAVITY AND NON-COMMUTATIVE
SPACE-TIMES IN THREE DIMENSIONS:

A UNIFIED APPROACH∗

Bernd J. Schroers

Department of Mathematics and Maxwell Institute for Mathematical Sciences
Heriot-Watt University, Edinburgh EH14 4AS, UK

bernd@ma.hw.ac.uk

(Received May 25, 2011)

These notes summarise a talk surveying the combinatorial or Hamil-
tonian quantisation of three dimensional gravity in the Chern–Simons for-
mulation, with an emphasis on the role of quantum groups and on the way
the various physical constants (c,G,Λ, ~) enter as deformation parameters.
The classical situation is summarised, where solutions can be characterised
in terms of model space-times (which depend on c and Λ) together with
global identifications via elements of the corresponding isometry groups.
The quantum theory may be viewed as a deformation of this picture, with
quantum groups replacing the local isometry groups, and non-commutative
space-times replacing the classical model space-times. This point of view
is explained, and open issues are sketched.
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1. Introduction and motivation

1.1. Historical remarks

Giving a talk on three dimensional (3d) gravity at a meeting in Cracow
is like carrying coal to Newcastle: the beginnings of the subject are usually
traced back to the paper [1] by Andrzej Staruszkiewicz, alumnus and later
professor at the Jagiellonian University in Cracow. Staruszkiewicz’s paper,
published in 1963, is about classical 3d gravity and its special features.
The subject of 3d quantum gravity started only five years later with the
realisation by Ponzano and Regge [2] that angular momentum theory plays
an important role in this context.
∗ Presented at the Conference “Geometry and Physics in Cracow”, Poland, September
21–25, 2010.
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Gravity in 3d is now a large subject in its own right, which I cannot
possibly review here. However, in this introductory part of the talk I will
at least attempt to identify a few of the main themes and relate them to
the approach followed here. Influential papers by Deser, ’t Hooft and Jackiw
written in the 1980s [3,4,5,6] on classical and quantum scattering of particles
demonstrated the possibility of carrying out non-perturbative calculations
of quantum scattering processes in 3d gravity. As we shall see, they also
contain indications of the relevance of the braid group in describing such
processes. These indications are elaborated in the later literature, see for
example [7, 8, 9], and turn out to be closely related to the quantum group
approach pursued in this paper.

The Chern–Simons formulation of 3d gravity, observed in [10] and elabo-
rated in [11], establishes a connection between 3d gravity and a host of areas
in mathematical physics, including topological field theory, knot theory, the
theory of Poisson–Lie groups and of quantum groups. Since this paper is
based on the Chern–Simons approach, we will see many of these connections.

The early paper by Ponzano and Regge, mentioned above, provides the
foundation of the spin foam approach to 3d quantum gravity. This is perhaps
the approach to 3d quantum gravity that contains the most directly useful
lessons for 4d quantum gravity. I will not discuss this approach in this paper,
and shall not attempt to summarise the large literature on it. However, it
is worth pointing out that there are close links with Chern–Simons theory
(spin foam state sums may be viewed as discretisation of the path integral)
and to quantum groups, see [12] for an early paper and [13,14] for examples
of recent papers with many references.

The possibility that non-commutative geometry is needed to describe
space-time at the quantum level has long been a theme in quantum gravity
research [15], see [16] for a recent discussion with some references. It is there-
fore interesting to ask if one can use the relatively tractable 3d situation to es-
tablish the role of non-commutative geometry in quantum gravity in a math-
ematically convincing way. Early discussions of non-commutative space-time
coordinates appear in the paper [17]. Spacetime non-commutativity in 3d
quantum gravity is studied, in different approaches, in [18,19,20,21]. Putting
these approaches into one coherent picture is one of the objectives of this
paper.

Finally, I should mention two further interesting themes of 3d gravity
research which I will not be able to touch on here. One is the study of black
holes, an introduction to which can be found in the book [22]. The other
is the relation to 3d hyperbolic geometry, where [23] may provide a good
starting point.
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1.2. Topological degrees of freedom and interactions in 3d gravity

The Einstein field equations

Rab − 1
2Rgab = −8πGTab

(in units where the speed of light is 1) determine the Ricci tensor of a
space-time in terms of the energy momentum tensor. In space-time dimen-
sions greater than three, the Ricci tensor contains less information than
the Riemann tensor and it is possible to have metrically non-trivial (i.e.
curved) space-times satisfying the vacuum (Tab = 0) field equations. In
three space-time dimensions, this is not possible. The Ricci tensor deter-
mines the Riemann tensor and, as a result, the only vacuum solutions of the
Einstein equations with vanishing cosmological constant are flat [22]. This
result simplifies Einstein’s theory of gravity in 3d dramatically, but does not
render it trivial. There are non-trivial solutions of the Einstein equations in
the presence of matter, and, if the topology of the three-dimensional mani-
fold representing the universe is non-trivial, there may be vacuum solutions
which, though flat, have non-trivial holonomy. These observations are often
summarised in the slogan that in 3d gravity there are no gravitational waves
but that the theory has topological degrees of freedom.

The simplest solution of the Einstein equations illustrating the previ-
ous paragraph is the space-time surrounding a point-particle. The energy-
momentum tensor is a Dirac delta-function with support on the world line
of the particle.The metric solving the field equations is flat away from the
world line and is singular on the world line. More precisely it is a direct
product of a cone (space) and R (representing time) [22]. The line element,
in terms of polar coordinates (r, φ), with r > 0, and a time coordinate t is
simply

ds2 = c2dt2 − dr2 − r2dφ2 . (1.1)

However, the range of φ is [0, 2π − µ), where the parameter µ is related to
the particle’s mass m and to Newton’s constant G via

µ = 8πGm .

In three dimensions, the physical dimension of G is that of an inverse mass
so that µ is a dimensionless, angular parameter. The effect of a particle on
the geometry of space-times is, then, to cut out a wedge of size µ from the
space-time surrounding the particle’s world line.

It is instructive to consider the effect of the geometry (1.1) on light test
particles. Such particles travel on geodesics, which are simply straight lines
on the cone after it has been cut open. It is easy to check that geodesics
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passing the particle of mass m on one side are deflecting relative to particles
which pass it on the other side by the angle µ (in the coordinate system
(t, r, φ)). This relative deflection is illustrated in Fig. 1 and is independent
of the distance of closest approach between the heavy particle of mass m
and the test particles (impact parameter). The interaction is topological in
the sense that it only depends on whether the test particle passes on the
left or the right of the heavy particle, and not on the relative distance. This
kind of interaction is familiar from the Aharonov–Bohm interaction between
electrons and a magnetic flux, and this analogy can be made precise: both
interactions can be related to the braiding of the world lines of the interacting
particles [9].

µ

µ

Fig. 1. Geodesics in the space surrounding a conical singularity with deficit angle µ.

1.3. Physical constants entering 3d quantum gravity

The four physical constant entering 3d quantum gravity are the speed
of light c, Newton’s constant G, Planck’s constant ~ and the cosmological
constant Λ. From these, we can form two length constants (remembering
that the dimension of G is an inverse mass), namely

Planck length `P =
~G
c
, Cosmological length scale `C =

1√
Λ
. (1.2)

In this paper we will deal with both Lorentzian and Euclidean gravity, and
we parametrise Euclidean and Lorentzian metrics in a unified fashion by
allowing c2 < 0 in the Euclidean situation. As a result, both the length
parameters in (1.2) may be imaginary, depending on the sign of c2 and Λ.
From the ratio of the two length parameters we can form a dimensionless
quantity. We define the deformation parameter

q = e−
~G
√
Λ

c , (1.3)

which may take values on the real line or the unit circle in the complex
plane.
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It is useful to clarify the role played by the various constants in 3d gravity
in general terms at this stage. The observation of the previous section that,
in the absence of matter, solutions of the Einstein equations are locally
flat generalises in the presence of a cosmological constant to the statement
that vacuum solutions are locally isometric to model space-times, which
depend on the parameters c and Λ. For Lorentzian gravity with vanishing
cosmological constant, for example, the model space-time is Minkowski space
while for Euclidean gravity with positive cosmological constant it is the
four-sphere with the round metric. The isometry groups of the model space-
times inherit a dependence on c and Λ. In the examples above they are,
respectively, the Poincaré group in 3d and the 4d rotation group SO(4).
Newton’s constant G enters when one studies the dynamics of space-time
and plays the role of a parameter in the Poisson structure and that of a
coupling constant to matter. Finally, ~ enters in the quantisation and the
dimensionless parameter q in (1.3), combining all four constant, controls the
quantum theory when all the constants 1/c,G,Λ, ~ are non-zero.

1.4. Motivation and outline of the paper

The goal of this paper is give a unified account of aspects of classical
and quantum gravity in 3d, in which the physical parameters of the previous
section enter as deformation parameters. Our account of classical gravity
is based on the formulation of 3d gravity as a Chern–Simons gauge theory,
where the local isometry groups play the role of the gauge groups. As we
shall see, the parameters c and Λ enter in this description via the structure
constants of the Lie algebra of the gauge group, while the parameter G
enters via the inner product (or trace) on the Lie algebra which is used in
the Chern–Simons action. We sketch the description of the phase space of 3d
gravity as the moduli space of flat connections, and review the description
of its Poisson structure in a formulation, due to Fock and Rosly [24], which
makes essential use of classical r-matrices.

The description of the Poisson structure in terms of r-matrices is tailor-
made for the quantisation via the combinatorial or Hamiltonian scheme pi-
oneered in [25, 26] and [27]. In this scheme, the quantisation is controlled
by quantum groups which are deformations of the local isometry groups of
the model space-times, with deformation parameters G and ~ in addition to
c and Λ. These quantum groups naturally act on non-commutative spaces,
which one may interpret as deformations of the classical model space-times.
This framework thus provides a concrete mathematical setting for exploring
the proposal that, in quantum gravity, space-time should be mathematically
modelled in terms of non-commutative geometry. We end with an evaluation
of the successes and limitations of this approach to 3d quantum gravity.
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2. Model space-times and isometry groups

The following treatment of the model space-times follows closely that
in [28]. We use Roman letters a, b, c . . . for 3d space-times indices, with
range for {0, 1, 2} (in both the Euclidean and Lorentzian case). The model
space-times arising in 3d gravity can be described in a simple and unified
fashion in terms of the metric

gµν = diag
(
−c2, 1, 1, 1

Λ

)
(2.1)

in an auxiliary R4. Here we use Greek indices for the range {0, 1, 2, 3}. The
model space-times can be realised as embedded hypersurfaces via

Hc,Λ =
{

(t, x, y, w) ∈ R4| − c2t2 + x2 + y2 +
1
Λ
w2 =

1
Λ

}
. (2.2)

This two-parameter family includes the three-sphere S3 (c2 < 0, Λ > 0),
doubles covers of hyperbolic space H3 (c2 < 0, Λ < 0), de Sitter space dS3

(c2 > 0, Λ > 0) and Anti-de Sitter space AdS3 (c2 > 0, Λ < 0). Double
covers of Euclidean space E3 and Minkowski M3 space arise in the limit
Λ → 0, which one should take after multiplying the defining equation in
(2.2) by Λ. In Fig. 2 we show the embedded model space-times (with one
spatial dimension suppressed).

In order to be able to take the limit Λ → 0 for the associated isometry
groups it is best to work with the inverse metric

gµν = diag
(
− 1
c2
, 1, 1, Λ

)
. (2.3)

The Lie algebra generators of the isometry groups of (2.3) can conveniently
be defined in terms of the Clifford algebra associated to (2.3) [28]. Thus we
define generators γµ via

{γµ, γν} = −2gµν , (2.4)

so that the six Lie algebra generators are given by

Mµν = 1
4 [γµ, γν ] . (2.5)

They have the commutation relations[
Mκλ,Mµν

]
= gκµMλν + gλνMκµ − gκνMλµ − gλµMκν . (2.6)

The advantage of the Clifford algebra approach is that one can immediately
write down two naturally defined invariant bilinear forms. One, denoted
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Fig. 2. (Double covers of) Model space-times for 3d gravity, shown as 2d models
embedded in a 3d auxiliary space with coordinates (t, x, w) according to (2.2) (the
second spatial coordinate y is suppressed). Euclidean and Minkowski space at the
top, spherical and de Sitter space in the middle, hyperbolic and Anti-de Sitter
space at the bottom.

〈·, ·〉 is defined by carrying out the Clifford multiplication and projecting
onto the invariant, central element γ5 = γ0γ1γ2γ3. Multiplying by −4
for later convenience, the resulting inner product is non-zero whenever the
indices on the basis vectors are complementary, for example〈

M12,M03
〉

= −1 ,
〈
M12,M01

〉
= 0 , etc.

Another bilinear form (·, ·) is obtained by carrying out the Clifford multi-
plication and projecting onto the identity. Again rescaling by −4 for conve-
nience we have a non-zero answer whenever the indices on the basis vectors
match(
M12,M12

)
= 1 ,

(
M01,M01

)
= − 1

c2
,

(
M13,M13

)
= Λ , etc.

As we shall see shortly, this is the Killing form on the Lie algebra.
We now express the above generators in more conventional 3d notation.

For this purpose we define the three-dimensional totally antisymmetric ten-
sor with downstairs indices via ε012 = 1. Then we define the rotation gener-
ator J̃0, the boost generators J̃1, J̃2 and translation generators P̃a via
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J̃a = 1
2εabcM

bc , P̃a = gabM
b3 , (2.7)

where we used the space-time part of the 4d metric gµν (2.1) to lower indices,
and refer to [28] for a discussion of physical dimensions and interpretation of
these generators (which are denoted by the same letters, but without tilde
there). The Lie algebra brackets are now[

J̃a, J̃b

]
= εabcJ

c ,
[
J̃a, P̃b

]
= εabcP̃

c ,[
P̃a, P̃b

]
= −c2ΛεabcJ̃c , (2.8)

with indices raised via the inverse metric gab. The combination −c2Λ which
occurs in the Lie brackets plays an important role in what follows, and we
introduce

λ = −c2Λ . (2.9)

The bilinear form (·, ·), already advertised as the Killing form, is(
J̃a, J̃b

)
= κab ,

(
P̃a, P̃b

)
= λκab , (2.10)

where

κab = − 1
c2
gab = diag

(
1,− 1

c2
,− 1

c2

)
. (2.11)

The metric κab is the most natural one on the Lie algebra so(3) respectively
so(2, 1) spanned by J̃0, J̃1 and J̃2. Note that it differs from the space-time
metric gab, but that it has the right physical dimensions and that imaginary
c gives the usual Euclidean metric, as required.

It is one of the coincidences of 3d that space-time and the Lie algebra
of rotations and/or boosts are both three-dimensional. Both are equipped
with Euclidean respectively Lorentzian metrics, but our derivation shows
that, in a physically natural normalisation and construction, the space-time
and Lie algebra metrics come out differently. This is potentially confusing in
calculations where indices are raised and contracted with these metrics, and
most papers on 3d gravity use conventions where the two kinds of metrics
coincide. We can achieve this by switching from the physical Lie algebra
basis used thus far to a geometrical basis according to

J̃0 → J0 = −|c|
2

c2
J̃0 , J̃1 → J1 = |c|J̃1 , J̃2 → J2 = |c|J̃2 ,

P̃0 → P0 = −|c|
2

c2
P̃0 , P̃1 → P1 = |c|P̃1 , P̃2 → P2 = |c|P̃2 . (2.12)
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In this geometrical basis, all the generators Ja are dimensionless, and all the
translation generators Pa have the dimension of inverse time. One checks
that the Killing metric now takes the form

(Ja, Jb) = ηab := diag
(

1,−|c|
2

c2
,−|c|

2

c2

)
, (2.13)

which is diag(1, 1, 1) in the Euclidean and diag(1,−1,−1) in the Lorentzian
case. Moreover, the Lie brackets take the same form as in (2.8),

[Ja, Jb] = εabcJ
c , [Ja, Pb] = εabcP

c , [Pa, Pb] = λεabcJ
c , (2.14)

but all indices are now raised with the Lie algebra metric ηab. This is con-
venient and we shall work in this basis for the remainder of this paper. We
denote the Lie algebra with these brackets by gλ. The conventions regarding
the metric then agree with [29], but the convention regarding the naming
of λ agrees with [11] and differs from [29], where Λ was used for what we
call λ now. Conventions regarding the naming of the cosmological constant
and the combination (2.9) differ in the literature, and the reader will need
to take good care when comparing results from different sources.

The other bilinear form introduced in the Clifford language gives the
following non-zero pairings

〈Ja, Pb〉 = c2ηab . (2.15)

This pairing is non-degenerate for any value of λ and is crucial for the
Chern–Simons formulation of 3d gravity, as we shall see.

In Table I we list Lie groups whose Lie algebras are (2.14). We have
used the isomorphisms SU(2)/Z2 = SO(3) and SL(2,R)/Z2 = SO(2, 1)0,
the identity component of SO(2, 1). The isometry groups are determined by
their Lie algebras only up to coverings, and our choice in Table I is one of
convenience. In the following, we write Gλ for this family of Lie groups.

TABLE I

Local isometry groups in 3d gravity.

Cos. constant Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 SU(2) n R3 SL(2,R) n R3

Λ > 0 SU(2)× SU(2) SL(2,C)
Λ < 0 SL(2,C) SL(2,R)× SL(2,R)
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3. The Chern–Simons formulation of 3d gravity

In Cartan’s approach to Riemannian geometry [30] the fundamental ge-
ometrical object is a connection which combines an orthonormal frame field
(or vielbein) ea and the spin connection ωab on the orthonormal frame bundle
into the so-called Cartan connection. Concretely, in the case of 3d geometry,
we combine the dreibein with the translation generators Pa of (2.7) and the
local connection one-forms ωa = 1

2ε
abcωbc with the rotation and/or Lorentz

generators Ja into the local one-form

A = eaP
a + ωaJ

a , (3.1)

taking values in the Lie algebra gλ. The curvature

FA = dA+ 1
2 [A ∧A] = R+ C + T (3.2)

of the Cartan connection combines the Riemann curvature of the spin con-
nection ω = ωaJ

a,
R = dω + 1

2 [ω ∧ ω] ,

a cosmological term

C =
λ

2
εabcea ∧ ebJc ,

and the torsion
T = (dec + εabcωa ∧ eb)Pc .

In the Cartan approach to general relativity (in any dimension), the
Einstein–Hilbert action is expressed in terms of the vielbein and the con-
nection, which are treated as independent variables. The action is called
the Palatini action when interpreted in this way. In this approach, the
condition of vanishing torsion (in the absence of spin sources) follows as a
variational equation rather than as an a priori condition. It turns out that,
in three dimensions, the Einstein–Hilbert (or Palatini) action is simply the
Chern–Simons action for the Cartan connection (3.1), with the bilinear form
(2.15) used as an inner product [10, 11]. However, beyond the equality of
the actions, the relationship between the Chern–Simons formulation and the
Einstein formulation of 3d gravity is subtle: non-invertible dreibeins ea may
occur in the Chern–Simons formulation but are ruled out in the Einstein
approach, based on metrics. This changes the nature of gauge orbits in
the two cases, so that the physical phase spaces are, in general, different.
This was pointed out in a 1+1 dimensional context in [31] and was demon-
strated in an explicit example involving four particles in 3d gravity in [32].
Our approach to 3d gravity in the remainder of this paper is based on the
Chern–Simons formulation.
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We discuss the Chern–Simons action in terms of the general bilinear form

(·, ·)αβ = α〈·, ·〉+ β(·, ·) (3.3)

on the Lie algebra gλ. This form is non-degenerate iff [33]

α2 − λβ2 6= 0 , (3.4)

and the associated action

Iαβ(A) =
∫
M3

(A ∧ dA)αβ + 1
3(A ∧ [A,A])αβ

= α

∫
M3

(
2ea ∧Ra +

λ

3
εabce

a ∧ eb ∧ ec
)

+β
∫
M3

(
ωa ∧ dωa + 1

3εabcω
a ∧ ωb ∧ ωc + λea ∧ Ta

)
, (3.5)

contains the gravitational action (the terms proportional to α), the Chern–
Simons action for the spin connection and additional terms involving torsion.
This general action was first considered by Mielke and Baekler [34] and
recently revisited in [35], where the analogy between the terms proportional
to β and the Immirzi term in 4d was stressed. The variational equations
which follow from the general action (3.5) are simply the flatness condition
for the Cartan connection, i.e. the vanishing of (3.2), provided the form (3.3)
is non-degenerate. This appears to imply that the family of actions (3.5)
leads to equivalent physics provided the condition (3.4) holds. However,
as argued in [33], the induced canonical structure of the phase space does
depend on the ratio of α and β. Since we are only interested in the Chern–
Simons formulation of 3d gravity here, we set

α =
1

16πG
, β = 0 (3.6)

from now onwards.
The gauge formulation of 3d gravity can easily and naturally be extended

to include minimal coupling between the gauge field and point particles. This
was first discussed in detail in [36] and is reviewed in our notation in [33],
where the dependence of the coupling on the parameters α and β is also
discussed. We are not able to discuss the coupling to particles, the Poisson
structure and the division by gauge equivalence in the space available here.
Instead, we summarise the results in the next section, and motivate them in
general, geometric terms.
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4. Classical r-matrices and Poisson brackets
on the space of holonomies

Having established that, in the Chern–Simons formulation, classical so-
lutions of the field equations are flat Gλ-connections, we can characterise the
phase space of 3d gravity on a manifold M3 in the Chern–Simons formula-
tion as the space of flat Gλ-connections on M3, modulo gauge transforma-
tions. In order to make this precise and concrete, we consider 3d universes
of topology M3 = R × S, where S is a two-dimensional manifold repre-
senting space. Then one can show [11] that the phase space is the moduli
space of flat Gλ-connections on S (i.e. the space of flat Gλ-connections
moduli gauge transformations), equipped with the Atiyah–Bott symplectic
structure [37, 38], which is defined in terms of the bilinear form used in the
Chern–Simons action. With the choice (3.6) this bilinear form is

1
16πG

〈·, ·〉 . (4.1)

Therefore, in the Chern–Simons formulation, and assuming the factorisation
M3 = R×S, the task of constructing a theory of quantum gravity amounts
to quantising the moduli space of flatGλ-connections on S, with a symplectic
structure induced by (4.1).

Despite the elegance and generality of this result, a precise mathemat-
ical description of the moduli space and a rigorous quantisation remains a
difficult task. In the case where S is a compact surface of genus g ≥ 2, the
moduli space can be characterised in terms of the moduli space AS of flat
SU(2) connections in the Euclidean case and in terms of Teichmüller Space
TS (a component of the moduli space of flat SL(2,R) connections) in the
Lorentzian case. These results, due to [23,39,40] and also discussed in more
physical language in [41], are summarised in Table II.

TABLE II

Phase space of 3d gravity for universes of the form R × S, with S compact and
genus ≥ 2 (quoted from [41]).

Cos. constant Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 T ∗AS T ∗TS
Λ > 0 AS ×AS TS × TS ∼ T ∗TS
Λ < 0 TS × TS ⊂ T ∗TS TS × TS ∼ T ∗TS

For each of the symplectic manifolds in the table, one may in principle
attempt a quantisation and subsequent interpretation in terms of 3d quan-
tum gravity. In this paper I summarise a description of the moduli space and
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its Poisson structure which is closely based on the parametrisation in terms
of Gλ-valued holonomies, and which uses a concrete and unified description
of the Poisson structure, which is tailor-made for quantisation. The idea for
this description is due to Fock and Rosly [24]. It is the foundation of the
combinatorial or Hamiltonian quantisation programme for Chern–Simons
theory, described in [25,26,27].

Fock and Rosly’s description of the phase space starts with the observa-
tion that flat connections on a manifold are characterised by their holonomies
along non-contractible paths. The moduli space of flat connections on a sur-
face S can thus be parametrised by the set of holonomies along closed paths
which generate the fundamental group of S, modulo gauge transformations
at the common starting and end point of those paths. So far we have as-
sumed that S is a compact manifold without boundary, but in the Fock
and Rosly description it is easy to include punctures decorated with co-
adjoint orbits of Gλ. This is desirable in the context of 3d gravity, since a
co-adjoint orbit of Gλ physically correspond to the phase space of a point
particle, and the ‘decoration’ of a puncture with a co-adjoint orbit is pre-
cisely the effect of minimal coupling between the Cartan connection (3.1)
and the point particle’s degrees of freedom. Moreover, this minimal coupling
correctly reproduces the gravitational coupling between a point particle and
the gravitational field, with momentum acting as a source of curvature and
spin acting as a source for torsion. For details we refer the reader to the
papers [33,36] and for a relatively brief but pedagogical account to [42].

The effect of the minimal coupling to co-adjoint orbits on the holonomies
can be summarised as follows. Using the inner product (4.1), co-adjoint
orbits can be written as adjoint orbits. For particles with mass m and
spin s, these orbits are of the form

Oms =
{
g (−µJ0 − σP0) g−1|g ∈ Gλ

}
,

where
µ = 8πGm , σ = 8πGs .

Decorating a puncture on S with such an orbit forces the holonomy around
the puncture to lie in the conjugacy class

Cµσ =
{
g (exp(−µJ0 − σP0)) g−1|g ∈ Gλ

}
.

For a genus g surface S with n punctures and orbit labels µi, σi, i = 1 . . . n,
a set of generators of the fundamental groups is shown in Fig. 3. The moduli
space of flat Gλ-connections can be written in terms of the extended phase
space

P̃ = G2g
λ × Cµnσn × . . . Cµ1σ1 , (4.2)
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by imposing the condition that a suitable composition of the generating
loops is contractible (and hence has trivial holonomy), and by dividing by
conjugation at the base point

P =
{

(Ag, Bg, . . . , A1, B1,Mn, . . .M1) ∈ P̃|[
Ag, B

−1
g

]
. . .
[
A1, B

−1
1

]
Mn . . .M1 = 1

}
/conjugation . (4.3)

mi

1

2

n−1
n

12

g−1

g

j

ib

aj

j

b

a

g

1

mn

m1

Fig. 3. Generators of the fundamental group of a compact surface with punctures.

The trick introduced by Fock and Rosly is to define a (symplectic) Pois-
son structure on the extended phase space P̃ (4.2) in such a way that the
Gλ-conjugation action on P̃ is symplectic and that the symplectic quo-
tient by it gives P with the Atiyah–Bott symplectic structure. The Poisson
structure on P̃ is defined in terms of a classical r-matrix, i.e. an element
r ∈ gλ ⊗ gλ which satisfies the classical Yang–Baxter equation (CYBE)

[r12, r13] + [r12, r23] + [r13, r23] = 0 , (4.4)

where we have used standard notation, explained, for example in textbooks
like [43] or [44]. The information about the inner product used in the defini-
tion of the Atiyah–Bott symplectic structure (or, equivalently, in the Chern–
Simons action) is encoded in r via the following compatibility requirement:

Definition An r-matrix is compatible with a Chern–Simons action if it
satisfies the CYBE (4.4) and if its symmetric part is equal to the Casimir
associated to the Ad-invariant, non-degenerate symmetric bilinear form used
in the Chern–Simons action.

In our case, the relevant Casimir operator for the ‘gravitational’ bilinear
form (4.1) is

K = 16πG (Ja ⊗ P a + Pa ⊗ Ja) . (4.5)
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A family of compatible r-matrices is given by [29,45]

r = 32πG
(
Pa ⊗ Ja + εabcn

aJb ⊗ Jc
)
, nan

a = −λ , (4.6)

where we use the metric (2.13) to lower and contract indices.
Two comments are in order here. The first concerns the dependence of

the solution on the real vector n = (n0, n1, n2) which has to satisfy the given
constraint but is otherwise arbitrary. Thus, for λ < 0, the vector n is any
vector of length

√
−λ in the Euclidean (hyperbolic) case, but is necessarily

time-like in the Lorentzian (de Sitter) case. For λ = 0, n vanishes in the
Euclidean case but may be any light-like vector in the Lorentzian case. For
λ > 0, n is space-like in the Lorentzian (Anti-de Sitter) case, while there
is no real solution in the Euclidean case. However, the Euclidean case with
λ > 0 (and hence Λ > 0) is the only case where the model space (S3) and
the local isometry group SU(2)×SU(2) are both compact, and the Chern–
Simons theory is simply two copies of SU(2) Chern–Simons theory, which is
extensively studied in the literature, see [46] for an early paper. I will not
say much about this case in the following, although it seems interesting and
worthwhile to relate the many results about SU(2) Chern–Simons theory to
the framework discussed here, and to interpret them in terms of 3d gravity.
Presumably this would involve using a complex vector n and imposing a
suitable reality condition after quantisation.

The second comment concerns the non-uniqueness of the solutions (4.6).
These solutions all amount to equipping the Lie algebras gλ with the struc-
ture of a classical double, see [43, 49] for general background and [29] for
an explanation in the context of 3d gravity. However, other r-matrices are
known, which are also compatible with the bilinear form (4.1) but which do
not belong to the family (4.6), see [33] for examples and the forthcoming
paper [47] for a systematic discussion. This gives rise to an ambiguity in the
implementation of the Fock–Rosly prescription and the subsequent quanti-
sation, but presumably leads to the same quantum theory. This issue has
not been conclusively settled, and is also discussed in [47]. One advantage of
working with the r-matrices associated to classical doubles is that one may
quantise by going to the associated quantum double. This is what we will
review in the next section.

The Fock–Rosly Poisson structure on P̃ is determined in terms of a
compatible r-matrix. The formulae for the brackets are explicit but lengthy,
and we refer the reader to [24] or [27] for details. Some understanding
of it can be gained from the observation, made in [48], that the Poisson
brackets can be ‘decoupled’ after a suitable coordinate change, and that, as
a symplectic manifold, P̃ is isomorphic to a direct sum of g copies of the
Heisenberg double of the Poisson–Lie group Gλ (with the Sklyanin Poisson–
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Lie structure defined by r) and the manifolds Cµiσi , i = 1, . . . n viewed as
symplectic leaves of the dual Poisson–Lie group G∗λ

P̃ ' Hei(Gλ)× . . .×Hei(Gλ)× Cµnσn × . . . Cµ1σ1 . (4.7)

The general definitions of the Sklyanin, Heisenberg double and dual Poisson
structures can be found in the paper [48] and also in the textbook [43] or
the lecture notes [49]. We will give some further background in the next
section, but here we note that all of these structures for the family of groups
Gλ with the r-matrices (4.6) are explicitly given in [29]. For example, in the
case of vanishing cosmological constant (and n vanishing), one finds [50,51]

Hei
(
SL(R) n R3

)
' T ∗(SL(2,R)× SL(2,R)) .

In the Fock–Rosly description of the phase space (4.3) one still needs to
impose a constraint in P̃, and take a quotient. We will not pursue this
here since we are mainly interested in the quantum theory. Our approach
to quantisation is to quantise P̃ first, and then to take the quotient at the
quantum level.

5. Quantum groups and 3d quantum gravity

5.1. The combinatorial quantisation programme
and associated quantum groups

The task of constructing a quantum theory of 3d gravity in the Chern–
Simons approach followed here is that of quantising the Poisson algebra
of functions on the physical phase space (4.3), and of finding a unitary,
irreducible representation (UIR) of the quantised algebra. By ‘quantisation’
of a Poisson manifoldM we mean, generally speaking, a deformation Fh(M)
of the algebra of functions on that manifold with a multiplication depending
on a parameter h in such a way that the commutator of two elements in
Fh(M) to first order in that parameter equals the Poisson bracket of the
classical limit of those elements [43]. Details, for example the precise class
of functions (C∞ or some algebraic subset), depend on the Poisson manifold
in question.

In the combinatorial approach, one simplifies this task by first quantising
the extended phase space (4.2), and then imposing the reduction to (4.3) at
the quantum level by a suitable condition on the Hilbert space carrying the
UIR of the quantisation of (4.2). An important advantage of the combina-
torial approach is that one really only needs to carry out the quantisation of
the building blocks entering the decomposition of the extended phase space
(4.7), and that these, in turn, can all be constructed from one quantum
group H and its representations.
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The quantum group H in question is the quantisation of the so-called
dual Poisson–Lie group G∗λ of Gλ (with the Sklyanin Poisson–Lie structure
defined by the r-matrix (4.6)). This is explained in general terms in [25,
26] and in the particular case of semi-direct products like the Euclidean or
Poincaré groups in [51]. It can be motivated as follows.

The dual Poisson–Lie group G∗λ is a non-linear analogue of the Kirillov–
Kostant–Souriau (KKS) Poisson structure on the dual g∗λ of the Lie algebra
gλ [49,52]. Since the quantisation of the KKS structure on g∗λ is the universal
enveloping algebra U(gλ), it is not surprising that the quantisation of the
Poisson algebra of G∗λ is a deformation of U(gλ). Thus we see already at
this general level that the quantum groups H are Hopf algebras obtained by
deforming the local isometry groups Gλ (or more precisely, of their group
algebras). We therefore refer to them as quantum isometry groups in the
following. There is further similarity between the canonical Poisson structure
on g∗λ and G∗λ: the symplectic leaves of the former are co-adjoint orbits
while the symplectic leaves of the latter are conjugacy classes in Gλ [43,49].
Given the non-degenerate bilinear pairing (4.1) on gλ, co-adjoint orbits may
be thought of as adjoint orbits in gλ, and conjugacy classes in Gλ may be
thought of as non-linear deformations of these.

The irreducible representations of a Lie algebra can be obtained by quan-
tising the KKS Poisson algebra and imposing the conditions which define
the co-adjoint orbits in terms of suitable Casimir operators. This analogy,
and the general comments of the previous paragraph, go some way towards
motivating the result that the quantisation of the conjugacy classes Cµiσi
in the decomposition (4.7) gives UIRs Vµiσi of the quantum group H (with
possible quantisation conditions on the labels µi, σi). The quantisation of
the classical Heisenberg double of Gλ is the Heisenberg double of the Hopf
algebra H [44]. Its unique irreducible representation, in the cases that have
been studied, is a quantum group analogue of the regular representation of a
group, and we therefore denote it by Reg(H). We thus arrive at the following
Hilbert space for the quantisation of the extended phase space (4.7)

H̃ = Reg(H)g ⊗ Vµnσn ⊗ . . . Vµ1σ1 . (5.1)

This space is, by construction, a (reducible) representation of the quantum
group H. The Hilbert space for quantisation of the physical phase space
(4.3) is the invariant part under this H-action [25,26,27]

H = InvH
(
H̃
)
. (5.2)

In order to carry out the combinatorial quantisation programme in prac-
tice one needs to construct the quantum group H and to find the repre-
sentations appearing in (5.1). The construction of the quantum group H is
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facilitated by the fact that the r-matrices (4.6) equip gλ with the structure
of a classical double of either sl(2,R) (in the Lorentzian case) or su(2) (in
the Euclidean case) with suitable bialgebra structures, given in [29]. Fol-
lowing the principle that the quantisation of the double is quantum double
of the quantisation [53], the family of quantum groups H can thus easily be
found. We list them in Table III, which should be seen as a quantised and
‘gravitised’ version of Table I of the classical isometry groups. We will not
give definitions or lists of generators and relations for any of these quan-
tum groups here, but refer to the standard textbooks [43, 44]. However, to
gain some physical understanding it is worth noting that half the generators
should be interpreted as rotation/boost generators and the other half as mo-
mentum generators. Thus, for example in the Lorentzian case of vanishing
cosmological constant

D(U(su(1, 1))) = U(su(1, 1)) n C(SU(1, 1)) , (5.3)

as an algebra, where C(SU(1, 1)) are complex-valued, smooth functions on
SU(1, 1). The generators Ja of U(su(1, 1))) are simply the rotation genera-
tor J0 and the boost generators J1, J2 already encountered in (2.14), while
elements of C(SU(1, 1)) should be thought of as functions or coordinates on
the non-linear momentum space SU(1, 1), see [42] for details and references,
and also below for further remarks. Finally, the parameter q appearing in
the table is the one introduced at the beginning (1.3). It combines all four
physical parameters entering quantum gravity with a cosmological constant.

TABLE III

Quantum isometry groups in 3d quantum gravity, q = e−
~G
√
Λ

c .

Cos. constant Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 D(U(su(2))) D(U(su(1, 1)))
Λ > 0 D(Uq(su(2))), q root of unity D(Uq(su(1, 1))) q ∈ R
Λ < 0 D(Uq(su(2))), q ∈ R D(Uq(sl(2,R))), q ∈ U(1)

The combinatorial quantisation programme has been carried out to var-
ious degrees of completeness in the different cases. For the Euclidean case
with vanishing cosmological constant, the importance of the quantum dou-
ble D(U(su(2))) was first pointed out in [8], and the proof that it plays
the role of the quantum isometry group H in the combinatorial approach to
Euclidean quantum gravity without cosmological constant was given in [45].
The Lorentzian case was considered in [9] and the general situation of Chern–
Simons theory with certain semidirect product gauge groups was considered
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in [51]. The situation where the classical gauge group is SL(2,C) (i.e. Eu-
clidean with Λ < 0 or Lorentzian with Λ > 0) was studied in [54], with
the relevant quantum group already constructed in [55]. The Euclidean case
with Λ > 0 is essentially the Turaev–Viro model. Finally, the very inter-
esting Anti-de Sitter case (Lorentzian and Λ < 0) has, unfortunately, not
received much attention in the framework sketched here.

5.2. Non-commutative momentum addition, braiding
and non-commutative space-times

Having constructed the quantum groups which control the construction
of 3d quantum gravity according to the combinatorial scheme it is natural to
ask what one can learn from them about the physics of 3d quantum gravity.

Formally, the role of the quantum isometry groups listed in Table III is
strictly auxiliary. The physical Hilbert space (5.2) is, by definition, invariant
under the action of those quantum groups. Physical observables which act
on this Hilbert space (see [56] for a discussion of classical examples) are not
obviously related to the quantum isometry groups. As already mentioned
(and discussed further in the Conclusion), the r-matrix used in the Fock–
Rosly scheme, and hence the associated quantum group, is not uniquely
determined. Both of these observations suggest that the quantum groups in
Table III have only an indirect physical significance.

On the other hand, the quantum isometry groups, their representations
and even their quantum R-matrices can be directly related to physical prop-
erties of particles in 3d quantum gravity. We will illustrate this for the
case of vanishing cosmological constant. In that case, the quantum dou-
bles appearing in Table III are quantum doubles of the Lie groups SU(2)
in the Euclidean case and SU(1, 1) (which is isomorphic to SL(2,R)) in the
Lorentzian case. These quantum doubles are semi-direct products as alge-
bras as shown in (5.3), and have a representation theory which is very similar
to those of the Euclidean and Poincaré groups [8, 57, 58]. The only differ-
ence is that the ‘mass shell’ in momentum space which characterises UIRs
of the Euclidean and Poincaré group become conjugacy classes in the non-
linear momentum spaces (SU(2) in the Euclidean case and SU(1, 1) in the
Lorentzian case). Physically, this means that momenta are no longer vectors
but group elements of SU(2) or SU(1, 1) and that momentum ‘addition’ is
implemented by group multiplication in SU(2) or SU(1, 1) instead of vector
addition. These non-linear and non-commutative properties of momentum
addition for gravitating particle reflect the use of holonomies in characteris-
ing particle properties, as used in early papers on 3d gravity [3, 7]. We can
even see it in the simplest non-trivial example of 3d space-time, namely the
cone shown in Fig. 1. The space-time is fully characterised by the deficit
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angle µ, which is the mass of the particle in units of the Planck mass 1/8πG.
However, the angular nature of this parameter fits very well into the pic-
ture of SU(1, 1)-valued momenta: we simply think of µ as a rotation, i.e.
a particular element of SU(1, 1).

A closely related property of gravitating particles is their scattering,
as analysed in some of the early papers on 3d quantum gravity [5, 6]. It
turns out that the S-matrix for the scattering of two massive and spinning
particles can also be interpreted in terms of quantum groups and the sort of
topological interactions discussed in Sect. 1.2. As shown in [9], the S-matrix
is naturally related to the R-matrix of the quantum double D(U(su(1, 1))).

Finally, the curved and non-Abelian nature of the momentum manifold
suggests that naturally defined positions coordinates (which should gener-
ate translations on momentum space) should be non-commutative. One can
argue this more formally by demanding that momentum and position alge-
bras should be dual as Hopf algebras, leading to the family of Hopf algebras
shown in Table IV. A particular, and much studied example is the ‘spin
space-time’ with generators X0, X1, X2 and commutation relations

[Xa, Xb] = `PεabcX
c , (5.4)

where `P = 8π~G is the Planck length in 3d gravity, and both the Euclidean
and Lorentzian interpretation apply. This non-commutativity of positions
was already considered in [17] and [18], and appears naturally in the quan-
tum group theoretical framework considered here. It can also be derived in
other approaches, namely in a path integral for particles where gravitational
field degrees of freedom have been integrated out [20] or in a coset construc-
tion [21], which is analogous to the way the classical space-times (2.2) can
be obtained as homogeneous spaces of the classical isometry groups Gλ. Fi-
nally, the role of the quantum double D(U(su(2))) as a quantum isometry
group of the 3d (Euclidean) was noted in [19], where the latter was studied
from the point of view of non-commutative differential geometry.

TABLE IV

Momentum/position algebras in 3d quantum gravity, q = e−
~G
√
Λ

c .

Cos.
const. Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 C(SU(2)) / U(su(2)) C(SU(1, 1))) / U(su(1, 1))
Λ > 0 Cq(SU(2)) / Uq(su(2)), q root of unity Cq(SU(1, 1)) / Uq(su(1, 1)) q ∈ R
Λ < 0 Cq(SU(2)) / Uq(su(2)), q ∈ R Cq(SL(2,R)) / Uq(sl(2,R)), q ∈ U(1)
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It is interesting that physical arguments, path integrals, coset construc-
tions and general quantum group theoretical considerations all lead to the
same non-commutative space-times. One way of exploring the physical
significance of this non-commutativity is to study representations of the
quantum doubles in Table III in position space. The requires Fourier-
transforming the usual formulation of the representations in momentum
space, in analogy to the way the UIRs of the Poincaré group can be Fourier
transformed into the solution space of the familiar wave equations of rela-
tivistic physics (Klein–Gordon, Dirac, Maxwell etc.). This was carried out
for D(SU(2)) in [59] and is considered for the Lorentzian case in [60].

6. Outlook and conclusion

We have seen that the combinatorial quantisation of the Chern–Simons
formulation of 3d gravity gives a unified picture of the various regimes of
3d gravity, with the physical parameters c, Λ,G and ~ entering as defor-
mation parameters in distinctive ways. Quantum groups naturally replace
the classical isometry groups in this approach to 3d quantum gravity, and
non-commutative space-times replace the classical model space-times. In
general, the relation between the quantum isometry groups and the physi-
cal Hilbert space of 3d quantum gravity is a formal one, but we have seen
that aspects of the quantum isometry groups like the non-commutative mo-
mentum addition and the braiding via the quantum R-matrix have a di-
rect physical interpretation. It is worth noting that it is possible to take
a Galilean limit c → ∞ in the framework discussed here [28, 61], and that
the non-commutative quantum space is the Moyal plane in that case, with
a time-dependent non-commutativity of the spatial coordinates.

In order to clarify the physical interpretation of quantum isometry groups
and the associated non-commutative space-times it may be useful to con-
sider universes with a boundary instead of the spatially compact universes
considered in this paper. The treatment of boundaries in the classical theory
is discussed in [32, 62, 63] but a general treatment of the quantisation has
not been given. Another approach would be to work directly on the physical
phase space as in [56,64], and to attempt the quantisation there.

Other quantum groups than quantum doubles have been discussed in
relation to 3d quantum gravity, notably bicrossproducts or κ-Poincaré alge-
bras which were originally introduced in 4d [65,66,67]. As shown in [33], the
κ-Poincaré algebra with the usual time-like deformation parameter is not
compatible with 3d gravity in the combinatorial framework. On the other
hand, κ-Poincaré algebras with space-like deformation parameters are pos-
sible. This and other quantisation ambiguities of 3d quantum gravity are
discussed in the forthcoming paper [47].
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