
Vol. 4 (1973) ACTA PHYSICA POLONICA B No 3

THE GERBE THEORY OF THE BOSONIC σ-MODEL:
THE MULTI-PHASE CFT, DUALITIES,

AND THE GAUGE PRINCIPLE�

Rafał R. Suszek

Department of Mathematical Methods in Physics
Faculty of Physics, University of Warsaw

Hoża 74, 00-682 Warszawa, Poland

(Received June 8, 2011)

The theory of gerbes provides us with powerful cohomological and geo-
metric tools that have been successfully employed in the construction and
classification of consistent two-dimensional non-linear bosonic σ-models, in
both the classical and the quantum régime. The theory does, in particular,
naturally accommodate the concept of a duality map between two such
models and affords a rigorous formulation of the gauge principle. In the
present note, I review recent progress in understanding the geometry of the
σ-model from the gerbe-theoretic perspective.
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1. Introduction

The use of geometric and cohomological methods in the study of quan-
tum-mechanical systems coupled to external gauge fields in topologically
nontrivial circumstances has a long and successful history. It can be traced
back to Dirac’s original attempt, reported in [1], at formulating a rigorous
description of the dynamics of an electron placed in the field of a magnetic
monopole without a global potential. The analysis has yielded a relative
quantisation of the electric and magnetic charges carried by the particles. It
also has — in the long term — led to the introduction of the concise language
of fibre bundles to modern mathematical physics and, ultimately, served the
development and a better understanding of gauge theory proper. The basic
idea of the approach, which boils down to consistently lifting the charged
particle’s dynamics from the original space-time targetM of its propagation

� Presented at the Conference “Geometry and Physics in Cracow”, Poland, September
21–25, 2010.
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to a larger space E
πE
ÐÐ�M , surjectively submersed over M and supporting

a global primitive of (the pullback along πE of) the closed background-field
strength, has proven particularly natural from the point of view of Dirac’s
quantisation programme of [2] insomuch as it provides us with an explicit
definition of a pre-quantum bundle π�T�ME

πE
ÐÐ� T�M over the phase space

T�M
πT�M
ÐÐÐÐ� M of the physical system under investigation. The bundle

gives rise to a definition of the Hilbert space of the system as the space of
its suitably polarised sections,

H � Γpol. �π�T�ME� ,

with symmetries realised as bundle automorphisms, cf., e.g., [3].
With the advent, in the 1980s, of a panoply of models of two-dimensional

Conformal Field Theory (CFT) with the metric-manifold structure on the fi-
breM of the covariant configuration bundle over the two-dimensional space-
time, termed non-linear σ-models and emerging from a description of critical
phenomena at points of a second-order phase transition in models of statis-
tical physics, as effective field theories of quantum spin-chain excitations,
and — finally — as Lagrangian models of the critical Polyakov string, the
methods previously applied in the study of the charged point-like particle
could be transplanted into the new domain of loop dynamics, whereby a
novel geometric object was called for. The relevant object, with local data1

captured by the (real) Deligne hypercohomology in degree 3, was identified
in the pioneering papers: [4] by Alvarez, and [5] by Gawędzki, and subse-
quently further formalised by Brylinski in [6]. A geometric realisation of
(a representative of) the relevant class in the second Deligne hypercohomol-
ogy group was obtained by Murray and Stevenson in Refs. [7, 8]. Thus, the
fibre bundle associated with the charged point-like particle was supplanted
by the (Abelian) bundle gerbe (with curving and Hermitian connection) G
over the targetM of the dynamical loop, in which all the features of the orig-
inal construction central to its rôle in defining a quantisation of the classical
model consistent with its symmetries were preserved in consequence of the
existence of the transgression map of [5]. The latter canonically associates to
G a line bundle LG � LM (with connection ©LG ) over the free-loop space LM

of M . Its curvature 2-form curv�©LG� > Ω2�LM� reproduces, upon pullback
to the phase space T�LM

πT�LM
ÐÐÐÐ� LM of the σ-model, the cohomologically

nontrivial (in general) component of the symplectic form Ωσ > Ω2�T�LM�
of the two-dimensional field theory,

H2�T�LM� ? �Ωσ � π�T�LMcurv�©LG�� � 0 .

1 That is data associated with a choice of an open cover of the target manifold M .
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The ensuing pre-quantum bundle of the σ-model, explicitly realised (at least
on the formal level) in terms of Feynman’s path integrals in a manner origi-
nally devised in [9] and adapted to the two-dimensional setting in [5], could
next be used in a systematic discussion of quantum lifts of its symmetries.

The unceasing theoretic interest in symmetries of two-dimensional CFT
and dualities between various such theories, going beyond the standard ap-
plications in the derivation of correlation functions with the help of Ward–
Takahashi identities and a methodical reconstruction of the Hilbert space of
these theories in the framework of the representation theory of the (current-
)symmetry algebras, is of twofold origin. On the one hand, it stems from the
long-cherished hope that an in-depth survey of dualities that set outwardly
distinct CFTs in correspondence can help to tame the immense moduli space
of consistent CFTs (of, say, the σ-model type), an issue of prime significance,
e.g., in string theory2. On the other hand, it rests upon the old observation
made by Martinec in [10] and subsequently elaborated upon by Moore and
Seiberg in Refs. [11,12,13] and by a good many of followers, that the gauging
of internal (i.e. rigid) symmetries of a given CFT, whether discrete or con-
tinuous, is a basic, and — under certain circumstances — even exhaustive
procedure for building new models from a given class (such as, e.g., rational
CFTs) out of a given parent model. In the latter context, it deserves to
be emphasised that gerbe theory puts at our disposal the potent tools of
equivariant cohomology which, in conjunction with the principle of catego-
rial descent laid out in [14], bring clear-cut answers to the questions of the
existence and uniqueness of the derivative σ-models that can be obtained
in the gauging procedure. In particular, they provide a neat cohomological
characterisation of gauge anomalies, cf. Refs. [15, 16] for a general discus-
sion and also Refs. [17,18,19,20] for a detailed treatment of the special case
of a discrete gauge group (augmented by the space-time parity group Z2,
of particular relevance in the context of a supersymmetric extension of the
theory). These answers fall in perfect agreement with results of alterna-
tive approaches to the CFT model-building, such as, e.g., the classification
of modular invariants and the TFT-aided realisation of Segal’s categorial
quantisation programme, whenever the said approaches manage to deliver
concrete results susceptible to comparison. But over and above this, they
seem to open avenues for straightforward generalisations that promise to elu-
cidate the recent proposals of so-called non-geometric σ-model backgrounds,
advanced in [21].

The notion of a conformal duality map constitutes a natural abstrac-
tion of the better-studied concept of an internal symmetry of a σ-model
with a fixed target space M , induced from an isometry of the latter (pre-
serving the gerbe over it in a suitable sense), to the case in which two dis-

2 The so-called “duality net” of consistent superstring theories lends strong support to
such expectations.
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tinct σ-models, with target spaces of possibly inequivalent topology, metric
and gerbe structure, are mapped to one another by a symplectomorphism
between the respective phase spaces that identifies the spectra of the two
Hamiltonians and admits a lift to a polarisation-intertwining isomorphism
between the two pre-quantum bundles. Given the geometric interpretation
of the σ-model target space, this indicates the possibility of a conceptual
departure from the Riemannian paradigm of globally smooth geometry, as
per a variant of the gauging procedure tailored to background-changing du-
alities. This is one of the topics currently under investigation. It is hoped
to give a rigorous meaning to the aforementioned proposal of loop dynamics
in non-geometric backgrounds.

Within the strict categorial quantisation programme, originally put for-
ward by Segal in [22] and later developed by Fröhlich et al. in a series of
papers that followed [23], a correspondence has been established between
(at least some of) the dualities and a class of operators on the Hilbert space
of the CFT on either side of a one-dimensional domain wall within the two-
dimensional space-time. From the field-theory perspective, the domain wall
marks the locus of a distinguished discontinuity of the σ-model field and
is accordingly understood to separate distinct phases of a single CFT. Do-
main walls of this sort, termed defect lines and akin to lines of frustration
in spin lattice models (such as, e.g., the two-dimensional Ising model in
which they describe macroscopic arrays of flipped neighbouring spins), are
bound to appear in a Lagrangian formulation of the classical dynamics of the
σ-model. A prototypical example of such a situation is encountered when
passing from a σ-model with a target space M having a discrete group G as
a subgroup of the (gerbe-preserving) isometry group to its G-orbifold, that
is a σ-model with the coset target space M~G. The orbifold can be defined
in terms of all those patch-wise continuous field configurations of the par-
ent model whose discontinuities, localised at a number of intersecting defect
lines `i, i > �1,2, . . .� embedded arbitrarily densely in the two-dimensional
space-time, are given each by the action of the corresponding element zi > G
and hence are smoothened upon passing to M~G. The above example moti-
vates the study of multi-phase CFTs in the Lagrangian picture in which they
are supported on space-times decorated by arbitrary oriented defect graphs,
such as the one shown in Fig. 1.

CFT1 CFT2
CFTN

Fig. 1. The two-dimensional space-time of a multi-phase σ-model. The various
phases of the CFT are denoted as CFT1,CFT2, . . . ,CFTN.
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The very construction of a classical multi-phase CFT in terms of an ac-
tion functional brings to the fore, as a prerequisite, the full-fledged
2-categorial structure built, along the lines of [14], around the geometric
object G necessitated by the analysis of the σ-model on an un-decorated
(closed) space-time. Consistently with the earlier findings, the construction,
derived3 in [28], assigns to the patches of the space-time decorated with a
defect graph Γ the 0-cells of the 2-category BGrb©�F � of Abelian bun-
dle gerbes with curving and Hermitian connection over the extended target
space F �� M @ Q @ T of the σ-model. The latter contains, alongside the
(now possibly multi-component) target manifold M � M1 @M2 @ � for the
patches (i.e. for the distinct phases), also the smooth targets Q and T into
which — respectively — the edges and the vertices of Γ are mapped by the
σ-model field X � Σ �F . To the edges and vertices of Γ , it associates —
respectively — specific 1-cells (termed bi-branes) and 2-cells (termed inter-
bi-branes) of the said 2-category.

The discussion of the σ-model in the presence of intersecting defect lines
very clearly attests the naturality of the 2-categorial (and geometric) lan-
guage of the theory of gerbes in the context of loop dynamics. This con-
clusion is further strengthened by the observation, formalised in [29], that
the complete 2-categorial content of the classical σ-model on a space-time
with defect lines canonically determines a geometric quantisation scheme
via transgression, in perfect analogy with the case of an undecorated space-
time with or without boundary examined in Refs. [17] and [5], respectively,
of which [29] is, in this respect, a logical completion. It is worth point-
ing out that the thus established framework of canonical analysis of the
multi-phase σ-model can be consistently extended to space-times of arbi-
trary topology4 to yield a phase- and Hilbert-space picture of the purely
geometric splitting-joining interaction of any number of loops. This fact can
be viewed as an explicit manifestation, first indicated in [5] (cf. also [30]), of
Segal’s categorial quantisation scheme in terms of generalised transport and
holonomy operators defining (the topological term in) the action functional
of the σ-model on an interaction-vertex space-time with an embedded defect
graph, of the type depicted in Fig. 2. Moreover, it supplies us with methods
of direct investigation of the fusion algebra of consistent dualities, an intrin-
sic feature of defects that distinguishes them from conformal boundaries.
The last remark finds explicit corroboration in the recent findings of [28]

3 The derivation was largely inspired by the earlier constructions for space-times with
boundaries, starting with [24], later taken up in [25], and culminating in Refs. [17,26],
and especially by the recent CFT-based proposal of [27] for space-times with non-
intersecting defects.

4 In its most elementary form, it gives an account of the canonical structure of the
model of a single loop sweeping a world-sheet of the topology of a cylinder in the
field space M .
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where the Moore–Seiberg fusing matrices of the simple-current sector of the
Wess–Zumino–Witten (WZW) σ-model with a simple connected Lie-group
target were extracted from the calculus of distinguished 2-isomorphisms of
the gerbe 2-category for the σ-model with the so-called central-jump defects,
and those of Refs. [31, 32] providing strong evidence of the existence5 of a
purely geometric realisation of the Verlinde fusion ring of chiral sectors of the
WZW model in terms of a class of inter-bi-branes associated with junctions
of the so-called maximally symmetric defects of [27].

Fig. 2. The basic splitting-joining interaction between states ψ1, ψ2 and ψ3 from
the respective phases CFTi, i > �1,2,3� across the defect graph Γ composed of
defect lines `1,2, `2,3 and `1,3 intersecting at defect junctions  and -.

The gerbe-induced geometric quantisation of the multi-phase σ-model
gives us access to the standard field-theoretic methods of study of con-
sistent dualities of the quantised theory and thus paves the way to their
cohomological classification and systematic construction. Finally, having
put background-preserving symmetries and bona fide dualities on common
footing, it offers us invaluable insights into the still poorly understood field
of non-geometry (or, more adequately, string or loop geometry) from the
vantage point of the by now much explored theory of geometric (internal)
symmetries of the σ-model, of an intrinsically groupoidal nature, and the
well-developed methodology of their gauging6. Hence, it gives promise of
continually expanding our hitherto knowledge on the intricate geometry of
the field space of the dynamical loop.

In the remainder of the present note, I try to give substance — by way of
a more detailed argument or a specific reference to the extensive literature
on the subject — to at least some of the observations and claims made in
the foregoing paragraphs. In so doing, I hope to provide the reader with a

5 It was actually proven in the case of the WZW model with the target group SU�2�.
6 For a recent work on the relation between internal σ-model symmetries and Courant-
type algebroid structures on the generalised tangent bundle over the extended field
space, and for a discussion of the groupoidal interpretation of the gaugeability con-
ditions catalogued in Refs. [15, 16], cf. [33].
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fairly general, if also unavoidably incomplete, overview of the recent progress
in our understanding of the geometry and physics of the two-dimensional
σ-model from the gerbe-theoretic perspective.

2. A 2-category for the decorated world-sheet

Two-dimensional field theories with a non-anomalous (local) conformal
symmetry have played an important rôle in the development of a variety
of fields of modern mathematical physics, serving as a testing ground for
a theoretic modelling of complex higher-dimensional phenomena, such as,
e.g., the confinement of charge, and bringing into the game their own share
of novel effects, such as, e.g., the fermion–boson equivalence. They have
been instrumental in setting up an effective field-theoretic description of
two-dimensional lattice models of statistical mechanics in terms of Landau–
Ginzburg Lagrangians, in the study of the Haldane–Affleck effective dynam-
ics of excitations of quantum spin chains in the continuum limit (resurfacing
nowadays as an important aspect of the AdS/CFT correspondence), and in
the Lagrangian formulation of classical string theory at criticality.

A prominent place amidst two-dimensional CFTs is occupied by the so-
called non-linear σ-model. In its simplest version, it is a Lagrangian theory of
C1-mapsX � Σ �M from a two-dimensional manifold Σ, termed the world-
sheet, with a Minkowskian or Euclidean7 metric γ into the smooth fibre M ,
termed the target space, of the covariant configuration bundle Σ �M � Σ.
The target space is equipped with a metric g and a 2-form (Kalb–Ramond)
field B, which, from the point of view of the two-dimensional field theory,
determine the highly non-linear (in general) dynamics of the embedding field
X as per the least-action principle applied to the σ-model action functional

Sσ�X;γ� � �1
2 S
Σ

gX �dX,, �γ dX� � S
Σ

X�B . (2.1)

Above, the metric g (evaluated at a point X�p� >M for p > Σ) is understood
to act on the second factor in dX � ∂aX

µ dσa a ∂µ (the latter being written
in local coordinates8 �σa�a>�1,2� on Σ and �Xµ�µ>1,dimM on M), and �γ is
the Hodge operator on ΩY�Σ�. Thus, the 2-form field enters the Lagrangian
description through a purely topological Wess–Zumino term, in complete
analogy with the manner in which the 1-form potential of the electromag-
netic field couples to a charged particle’s world-line.

7 While on world-sheets with elementary topology, such as the cylinder and the torus,
the choice of the signature of γ is the standard matter of a field-theoretic convention,
obstructions against the existence of a global Lorentzian structure would favour the
Euclidean signature on world-sheets of a more involved topology.

8 Here, and in what follows, we use the notation 1, n � � k > N S 1 B k B n �.
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The metric g and the 2-form field B are mutually constrained by the
requirement of cancellation of the Weyl anomaly in the quantised σ-model,
cf. Refs. [34,35], so that — in particular — we are not at liberty to choose,
say, the Kalb–Ramond field arbitrarily once the metric onM has been spec-
ified. It is important to note that neither the anomaly constraints, nor the
field equations of the σ-model depend on B itself but instead on its exterior
derivative, or field strength dB �� H. Taking into account a loop variant of
the Aharonov–Bohm effect, we infer that quantum-mechanical amplitudes
are ultimately bound to depend on the cohomology class of the gauge field B.
It may well happen that the anomaly constraints force us to consider a field
strength 3-form H that represents a nontrivial class in H3�M� and hence
does not admit a global primitive. This is the case, e.g., if a compact sim-
ple 1-connected Lie group G with the Cartan–Killing metric is taken as the
target space, as in the seminal [36], whereupon H is found to coincide with
an R-multiple of the canonical Cartan 3-form on G whose de Rham class
generates H3�G� � Z. It is therefore of essence to understand the topological
term in Eq. (2.1) in more intrinsic, geometric terms, devoid of an explicit
dependence on the choice of a local primitive B of the field strength H.
This motivated a detailed examination, undertaken by Alvarez in [4] and
subsequently placed in the appropriate (more) formal context in Refs. [5,6],
of the Wess–Zumino term in a topologically nontrivial setting. The result
was a local formula for the Wess–Zumino term given by (the logarithm of)
a particular Cheeger–Simons differential character evaluated on the closed
world-sheet Σ along the embedding map X. While written for a specific
triangulation of the world-sheet and expressed in terms of components of a
Čech–Deligne cochain, composed of local sections of the Deligne complex

D�2�YM � U�1�
M

1
i
d log

ÐÐÐÐ� Ω1�M� d
Ð� Ω2�M�

of sheaves of locally smooth U�1�-valued maps and locally smooth (real)
1- and 2-forms on M , associated with a specific open cover of M and defin-
ing a class in the Deligne hypercohomology group H2 �M,D�2�YM� that de-
termines a local trivialisation of H, the formula was demonstrated to be
independent of the arbitrary choices entering its definition. By the standard
argument, the de Rham class of the field strength was then constrained as

�H� >H3�M,2πZ� `H3�M,R� .

A similar strategy was subsequently employed in [24] in a derivation of ap-
propriate local boundary corrections to the Wess–Zumino term induced on a
world-sheet with ∂Σ x g. This, in turn, produced an additional constraint9

9 Here, B3�Q� is the group of exact 3-forms on Q.
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ι�QH > B3�Q�

for the restriction of H to a submanifold embedded, as per ιQ � Q�M , in
the target space and defining the codomain of X S∂Σ .

The geometric object G��YM,B, L, µL� realising a class in H2�M,D�2�YM�
associated with the given closed 3-form H with periods in 2πZ was con-
structed by Murray in [7] and dubbed the Abelian bundle gerbe with curving
and Hermitian connection. It is neatly represented by the diagram

and consists of a surjective submersion πYM � YM � M and a globally
defined 2-form B > Ω2�YM� such that

π�YMH � dB ,

together with a line bundle C0 L
πL
ÐÐ� Y�2�M over the M -fibred square

Y�2�M � � �y1, y2� > YM �YM S πYM�y1� � πYM�y2� � � YM �M YM ,

pri � Y�2�M � YM � �y1, y2�( yi , i > �1,2� ,

with connection ©L of curvature

curv�©L� � pr�2B � pr�1B ,

and of a distinguished isomorphism of line bundles with connection

µL � pr�1,2La pr�2,3L
�

ÐÐ� pr�1,3L

over the triple M -fibred product Y�3�M � YM �M YM �M YM , the latter
being equipped with the canonical projection maps

pri,j � Y�3�M � Y�2�M � �y1, y2, y3�( �yi, yj� ,
�i, j� > ��1,2�, �2,3�, �1,3�� .
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The isomorphism is required to obey the associativity constraint

pr�1,2,4µ X �idpr�1,2L
a pr�2,3,4µ� � pr�1,3,4µ X �pr�1,2,3µa idpr�3,4L

�

over the quadruple M -fibred product Y�4�M � YM �M YM �M YM �M YM ,
endowed with the obvious canonical projections pri,j,k � Y�4�M � Y�3�M and
pri,j � Y�4�M � Y�2�M . An explicit link to the local description in terms of
the Deligne hypercohomology is readily established with the help of local
sections of YM �M and L� Y�2�M associated with an open cover of M .

Just as line bundles with connection over a given base form a category
together with bundle maps between them, gerbes with curving and connec-
tion over a given base M give rise to a tensor 2-category in the sense of,
e.g., [37], as first observed by Stevenson in [14] and subsequently elaborated
in [38]. The 2-category shall be denoted as BGrb©�M� in what follows. Its
1-cells are morphisms

Φ1,2 � G1 � G2

between gerbes Gi � �YiM,Bi, Li, µLi� (i.e. between 0-cells), defined as
triples Φ1,2 � �YY1,2M,E1,2, α1,2� consisting each of a surjective submersion
YY1,2M � Y1,2M � Y1M�MY2M , of a rank-N vector bundle E1,2 � YY1,2M
with connection ©E1,2 of scalar curvature

1
N

tr �curv�©E1,2�� � pr�2B2 � pr�1B1

(written in terms of the canonical projections pri � Y1,2M � YiM), and of
an isomorphism of vector bundles with connection

α1,2 � pr�1,3L1 a pr�3,4E1,2
�

ÐÐ� pr�1,2E1,2 a pr�2,4L2

over the M -fibred square Y�2�Y1,2M � YY1,2M �M YY1,2M , the latter being
equipped with the obvious canonical projections pr1,2,pr3,4 � Y�2�Y1,2M �

YY1,2M and pri,i�2 � Y�2�Y1,2M � Y
�2�
i M . The isomorphism is subject to an

additional condition that expresses its compatibility with the µLi , cf. [38].
The distinguished (invertible) 1-cells associated with rank-1 bundles are
called 1-isomorphisms. Finally, 2-cells of BGrb©�M� are secondary mor-
phisms
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between primary morphisms ΦA1,2 � �YAY1,2M,EA1,2, α
A
1,2�, A > �1,2�,

i.e. pairs �YY1,2Y1,2M,β1,2� composed each of a surjective submersion
πYY1,2Y1,2M � YY1,2Y1,2M � Y1,2Y1,2M � Y1Y1,2M �Y1,2M Y2Y1,2M and
an isomorphism of vector bundles with connection

β1,2 � p�1E
1
1,2

�

ÐÐ� p�2E
2
1,2 ,

expressed in terms of the maps pA � prA X πYY1,2Y1,2M , with the canonical
projections prA � Y1,2Y1,2M � YAY1,2M , and subject to an extra condition
of compatibility with the αA1,2, cf. ib. It is to be noted that the above
construction is compatible with the underlying structure of a category of
(finite-dimensional) smooth manifolds of which the baseM of BGrb©�M� is
an object: The 2-category admits a natural notion of transport (or pullback)
along smooth maps.

The hypercohomological content of the gerbe 2-category, accessible di-
rectly via local sections of the various surjective submersions involved, af-
fords an explicit definition of the σ-model on a world-sheet Σ with an embed-
ded defect graph Γ , first derived in [28], along the lines of Alvarez’s original
reasoning. The derivation presupposes that patches of Σ into which Γ splits
the world-sheet are mapped by a patch-wise C1-map X into a metric target
space �M,g� (possibly a disjoint union of spaces) with a gerbe G over it, that
edges ` of Γ are similarly mapped into another manifold Q equipped with
a pair of smooth maps ια � Q �M, α > �1,2�, and that every intersection
vertex n of valence n of Γ is sent into a smooth manifold Tn coming with
a collection of smooth maps πk,k�1

n � Tn � Q, k > 1, n (with πn,n�1
n � π1,n

n ).
The latter satisfy some straightforward conditions of compatibility with the
ια which follow from their world-sheet interpretation: While the maps ια
reproduce the two one-sided limits of the patch-embedding map attained at
a point p > ` from the single value of the edge-embedding map at p, the
πk,k�1
n relate, in an analogous fashion, the one-sided limiting values of the

edge-embedding maps for the n defect lines converging at n to the value
of the vertex-embedding map assumed at that junction of the defect lines.
The defining data of a consistent σ-model on Σ a Γ , to be pulled back to
the patches of the world-sheet and to the edges and vertices of the defect
graph, are then supplied by the 2-category BGrb©�F � for the composite
target F � M @Q @ T � M @Q @ *n>NC3

Tn of the σ-model field X. More
specifically, we arrive at the notion of a string background, cf. [29], that is
a triple B � �M,B,J � composed of the following geometric structures:

• the target M � �M,g,G� consisting of a metric target space �M,g�
and a gerbe G of curvature H � curv�G�;

• the G-bi-brane B � �Q, ια, ω,Φ S α > �1,2�� consisting of a G-bi-brane
world-volume Q, with a G-bi-brane curvature 2-form ω, and a pair of
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smooth maps ια � Q�M, α > �1,2�, and of a gerbe 1-isomorphism

Φ � ι�1G
�

ÐÐ� ι�2G a Iω ,

written in terms of a so-called trivial gerbe Iω with a global curving
ω, obeying the identity

∆QH � �dω , ∆Q �� ι�2 � ι
�

1 ;

• the �G,B�-inter-bi-brane J � �Tn, �πk,k�1
n S k > 1, n�, ϕn S n > NC3�,

consisting of the composite �G,B�-inter-bi-brane world-volume T �

*n>NC3
Tn, with a collection of smooth maps πk,k�1

n � Tn � Q subject
to the constraints10

ι2 X π
k�1,k
n � ι1 X π

k,k�1
n , k > 1, n ,

and of distinguished gerbe 2-isomorphisms

written in terms of 1-isomorphisms Φk,k�1
n � πk,k�1�

n Φ between gerbes
Gkn � �ι1 X πk,k�1

n ��G, and of the trivial gerbes with global curvings
ωk,k�1
n � πk,k�1�

n ω. The latter satisfy the Defect-Junction Identity (DJI)

∆Tnω � 0 , ∆Tn ��

n

Q
k�1

πk,k�1�
n .

10 In fact, one should also take into account the various possible relative orientations
(in-coming vs. out-going) of the defect lines converging at a given defect junction. We
drop the relevant elements of the formalism for the sake of transparency, assuming
all defect lines to be in-coming.
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Within this complex but otherwise completely natural geometric and cat-
egorial framework, the exponentiated11 topological term in the action func-
tional of the σ-model acquires a simple interpretation: It is the complex num-
ber of unital modulus assigned to Σ a Γ by a generalised Cheeger–Simons
differential character on graph-decorated closed two-dimensional manifolds.
The number, determined by the background B, was dubbed the generalised
surface holonomy for a network-field configuration �X SΓ � in [28] and de-
noted as HolB�X SΓ �, cf. [29]. In the simplest setting, which is that of
Γ � g, it is just the standard surface holonomy HolG�X� > U�1� given
by the image of the class �X�G� > H2 �Σ,U�1�� under the isomorphism
H2 �Σ,U�1�� � U�1�. The appearance of the (sheaf-)cohomology group
H2 �Σ,U�1�� in this context is a direct consequence of the following cru-
cial corollaries of the relation between the Deligne hypercohomology and
sheaf cohomology, cf., e.g., Refs. [6, 17,39].

Proposition 1 The set of 1-isomorphism classes of gerbes with a given cur-
vature over a manifold M is a torsor under a natural action of the sheaf-
cohomology group H2 �M,U�1��.
Proposition 2 The set of 2-isomorphism classes of 1-isomorphisms be-
tween two given gerbes over a manifold Q is a torsor under a natural action
of the sheaf-cohomology group H1 �Q,U�1��.
Proposition 3 The set of inequivalent 2-isomorphisms between two given
1-isomorphisms of gerbes over a manifold T with Sπ0�T �S connected com-
ponents is a torsor under a natural action of the sheaf-cohomology group
H0 �T,U�1�� � U�1�Sπ0�T �S.

Incidentally, the above propositions lead us to a natural cohomological
classification of the various constitutive elements of the two-dimensional field
theory of interest, to wit,

• inequivalent species of the theory with a fixed target structure �M,g,H�
are enumerated by classes in H2 �M,U�1��;

• inequivalent species of a defect line with a fixed (target and) G-bi-brane
structure �Q, ια, ω� are labelled by classes in H1 �Q,U�1��;

• inequivalent species of a defect junction with a fixed (target, bi-brane
and) �G,B�-inter-bi-brane structure �Tn, �πk,k�1

n S k > 1, n�� are in a
one-to-one correspondence with elements of U�1�Sπ0�T �S.

Their precise physical interpretation and direct application in a systematic
study of σ-model dualities shall be discussed in the remainder of this note.

11 Recall that the classical action functional enters the definition of the Feynman am-
plitude through the expression eiSσ�X;γ�.
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3. The canonical picture: dualities and state fusion

A field-theoretic model of physical phenomena ought to be understood
more adequately as an equivalence class within a suitable category (that is,
depending on the régime of the analysis, either the category of symplec-
tic manifolds with a distinguished family of Hamiltonian functionals or the
category of Hilbert spaces with a distinguished family of self-adjoint oper-
ators) than a particular representative of the said class, defined by, say, a
specific action functional. This natural constatation has driven much of the
hitherto effort aimed at understanding the so-called moduli space of consis-
tent (conformal) non-linear σ-models, or — more generally — of consistent
two-dimensional CFTs, that is the space of all such theories. Amongst the
great successes of this line of research, one should count the discovery of
the ‘duality net’ of (super)string theories in the 1990s. In what follows, we
stick to the fairly standard nomenclature and call an isomorphism of the
suitable (classical or quantum) category of field theories a duality. In so
doing, we single out those isomorphisms which do not change a given target
M � �M,g,G� and merely effect translations within the corresponding state
space along flows of Hamiltonian vector fields induced by gerbe-preserving
isometries of the target space — these dualities shall be called symmetries
of a given σ-model. They are at the focus of the next section of this note.

The smooth manifold structure on (the fibre of) the covariant configura-
tion bundle of the σ-model serves to guide our intuition in the search for a
field-theoretic realisation of a duality. The latter is a particular correspon-
dence between states of the theory, and states are classically represented
by the Cauchy data, localised on equitemporal slices of a cylindrical world-
sheet, of field configurations extremising the σ-model action functional, or
— in short — by loops smoothly embedded in the target space and carrying
a normal momentum 1-form field. This is just the standard model T�LM
of the loop phase space12. Consequently, a duality can be represented by a
closed contour in a cylindrical world-sheet, separating the space-time sup-
ports of the two dual σ-models which are to be regarded as phases of a single
CFT. In this picture, illustrated in Fig. 3, the two states in correspondence
appear as the two one-sided boundary conditions imposed at the identifica-
tion/discontinuity contour upon the two smooth classical field configurations
of the dual models extending away from the contour. As the two field con-
figurations come from two equivalent formulations of a single theory, it is

12 Having admitted arbitrary embedded defect graphs, we should — in principle —
consider both smooth and piece-wise smooth loops in M , the latter spanning the so-
called twisted sector of the theory in the presence of time-like defect lines. However,
as we are mainly interested in understanding the canonical interpretation of defects,
we focus on the former, relegating the discussion of the latter to the final part of
the present section in which we present results on the canonical description of the
splitting-joining loop interaction.
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to be expected that they can be glued consistently across the identification
contour and thus define a field configuration of a σ-model with a circular
domain wall, or defect line. If this heuristic reasoning is to work, the ‘duality
data’ to be placed at the discontinuity contour should be identified with the
data of a suitable bi-brane in whose world-volume, customarily termed the
correspondence space in this context, the contour is embedded.

Fig. 3. The correspondence between states mediated by the defect line: The state
ψ1 from the phase CFT1 is transferred to the state ψ2 from the phase CFT2 across
the defect line `1,2.

The above intuition appears to be corroborated by numerous results of
studies of defects carried out in the framework of the full-fledged quantum
CFT (both algebraic and categorial), and in particular those reported in
Refs. [28, 40, 41, 42, 43, 44]. They bear ample evidence of a prominent rôle
played by conformal domain walls in establishing correspondences between
phases of CFT, in encoding order-disorder dualities among various CFTs,
and in mapping into one another their RG flows as well as UV and IR fixed
points thereof. Furthermore, they associate with the domain walls the so-
called spectrum-generating symmetries of the CFT, relating — via fusion
with boundary states — the categories of consistent boundary bi-branes (or
D-branes) of a dual pair of CFTs.

The point of departure in the discussion of the anticipated relation be-
tween σ-model dualities and defect lines is the derivation of the canonical
formalism for the σ-model. This goal is most straightforwardly accomplished
within the framework of covariant classical field theory (or first-order formal-
ism) of Refs. [45,46,47,48,49,50], giving immediate access to the symplectic
structure on the phase space of the field theory of interest (and so also to
the Poisson algebra of Hamiltonian functionals). In the case of the (mono-
phase) σ-model determined by the choice of the target M � �M,g,G�, with
its standard phase space

Pσ,g � T�LM
πT�LM
ÐÐÐÐ� LM � Cª �S1,M� ,
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it yields the symplectic form

Ωσ,g � dθT�LM � π�T�LM S
S1

ev�curv�G� ,

written in terms of the canonical 1-form θT�LM > Ω1�T�LM� and of the
standard evaluation map ev � LM � S1

�M , cf. [29].
The significance of the last result rests upon the observation, originally

due to Dirac, that the symplectic structure on the classical state space of
the theory can be employed directly to canonically quantise the theory by
taking as its Hilbert space the space of suitably polarised sections of a line
bundle over the phase space endowed with a Hermitian connection of cur-
vature equal to the symplectic 2-form, cf. [2] and, e.g., [3]. This so-called
geometric quantisation of the classical theory was originally put to work
in the context of the quantum mechanics of a charged point-like particle
propagating in the electromagnetic field. However, it has since found highly
nontrivial applications such as, e.g., the celebrated Kähler quantisation of
the three-dimensional Chern–Simons theory worked out by Witten et al.
in [51]. In the setting of interest, Dirac’s quantisation programme can be
carried out, at least formally, due to the following remarkable feature of
the gerbe (co)defining the classical σ-model, as first noted and subsequently
exploited by Gawędzki.

Theorem 4 [5] A gerbe G over M canonically induces a line bundle πLG �

LG � LM over the free-loop space LM , termed the transgression bundle, with
connection ©LG of curvature

curv�©LG� � S
S1

ev�curv�G� .

The assignment G ( LG gives rise to a cohomology map

H2 �M,D�2�YM�� H1 �LM,D�1�YLM� ,
termed the transgression map, between cohomology groups of which the latter
consists of isomorphism classes of line bundles with connection over LM .

Thus, the gerbe defines a pre-quantum bundle of the (mono-phase)
σ-model13,

πLσ,g � Lσ,g �� π
�

T�LMLG a �T�LM �C�� T�LM ,

where the trivial factor T�LM � C is endowed with the global connection
1-form θT�LM .

13 In Dirac’s geometric quantisation, classical symmetries of the theory are required
to lift to polarisation-preserving automorphisms of the pre-quantum bundle. It well
deserves to be remarked that this postulate was explicitly realised in the setting of
the WZW model by Gawędzki et al. in [52].
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In the presence of the pre-quantum bundle, we may formalise the con-
cept of a duality and, in this manner, set up the context for a canonical
interpretation of a defect and of the attendant bi-brane B.

Definition 5 A pre-quantum duality of the σ-model with a (composite) tar-
get M � �M,g,G� is a graph Iσ ` Pσ,g � Pσ,g � P�2

σ,g isotropic with respect
to the ‘difference’ symplectic form

Ω�

σ,g �� pr�1Ωσ,g � pr�2Ωσ,g ,

having the property that the difference

H
�

σ,g �� pr�1Hσ,g � pr�2Hσ,g

of pullbacks of the Hamiltonian density Hσ,g of the σ-model along the canon-
ical projections pri � P�2

σ,g � Pσ,g vanishes identically on Iσ, and such that
the symplectomorphism of Pσ,g thus defined by Iσ lifts to a bundle isomor-
phism

Dσ � pr�1Lσ,gSIσ
�

ÐÐ� pr�2Lσ,gSIσ .
 

At this stage, it remains to identify the phase-space representation of the
state identification across the world-sheet defect, a step that clearly calls
for a dynamical input. Its source is the principle of least action for the
σ-model in the presence of the circular defect under investigation. It yields,
alongside the standard field equations for the two phases of the σ-model
separated by the defect line, also a gluing condition for the momentum
1-form fields pSα, α > �1,2� on either side of the defect line. The condition,
dubbed the Defect-Gluing Condition (DGC) in [28], takes the form

pS1 X ι1� � pS2 X ι2� �X�
Ât ¸ ωX � 0 ,

expressed in terms of the vector field Ât tangent to S1 (modelling the defect
line) and the tangent maps ια� � Γ �TQ� � Γ �TM� and X� � Γ �TS1� �
Γ �TQ�, the latter being associated to the defect loop (embedding) X � S1

�

Q. The DGC, in conjunction with the obvious relation

XSα � ια XX , X > LQ

between the two loops XSα > LM put in correspondence by the circular
defect (as being engendered by the single loop in Q introduced previously),
defines a subset within P�2

σ,g whose properties can be further examined by
standard methods of symplectic geometry. The upshot is the sought-after
correspondence
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Theorem 6 [29] A G-bi-brane B � �Q, ια, ω,Φ S α > �1,2�� defines a pre-
quantum duality of the σ-model with target M � �M,g,G� iff both induced
loop maps Çια � LQ� LM � X ( ιαXX are surjective submersions satisfying
a number of straightforward conditions, including a condition for their tan-
gent maps which expresses the preservation, at the defect, of the component
of the energy-momentum tensor of the σ-model generating those conformal
transformations on the world-sheet which deform the defect. Defects of this
kind are termed topological.

The identification of the topological defects as the ones which correspond to
dualities falls in perfect agreement with results of the formerly cited CFT
analyses. Also the distinction of surjective submersions from among the
possible bi-brane maps has found its interpretation in the context of the
principle of categorial descent, to be encountered in the next section, cf. [53].

Given the above general result on the correspondence between world-
sheet defects and σ-model dualities, it is only natural to reverse the question
and look for dualities that canonically give rise to a bi-brane structure. This
issue was addressed in [29], following the earlier discussion in Refs. [54, 55],
with regard to a class of dualities engendered by symplectomorphisms with
generating functionals linear in the canonical variables �Xα�Ât,pα� — such
symplectomorphisms are manifestly distinguished in view of the structure of
H�
σ,g, quadratic in these variables. They cover a wide range of important du-

alities, including isometric symmetries of the σ-model as well as the so-called
T-duality of Refs. [56,57], currently under investigation in the framework of
gerbe theory, cf., e.g., Refs. [43, 58]. The upshot of the canonical analysis
performed in [29], in which the notion of the gerbe-induced pre-quantum
bundle of the σ-model played a key rôle, was the identification of two im-
portant classes of dualities, assigned the respective types T and N , that
induce a bi-brane structure in the Cartesian square M �M of the target
space of the σ-model. We have

Statement 7 For every pre-quantum duality of the linear type T of the
σ-model with target M � �M,g,G�, there exists a topological defect and a G-
bi-brane with a world-volume Q `M �M endowed with a symplectic 2-form
induced by its curvature ω. The latter satisfies, together with the pullback of
the metric g along the bi-brane maps ια � prα � Q�M (given by the canon-
ical projections restricted to Q `M�M), duality-background constraints akin
to the Buscher rules of Refs. [56,57].

Similarly, for every pre-quantum duality of the linear type N of the said
σ-model, there exists a topological defect and a G-bi-brane of a vanishing
curvature, with a world-volume Q � �idM �F ��M� `M �M determined by a
smooth isometry F � M �M of the metric manifold �M,g�. The isometry
preserves G in the sense of a 1-isomorphism G

�

ÐÐ� F �G.
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The discussion of the concept of a duality in the framework of the gerbe
theory of the σ-model demonstrates, once again, the adequacy and the power
of the geometric and cohomological methods which, while themselves safely
based in the smooth category (from which the relevant structures G and B
come), transcend the perimeter of the classical description.

The scope of their application is by no means limited to the study of
dualities. Another aspect of the loop mechanics encompassed by the gerbe-
theoretic framework advocated herein is the canonical picture of the purely
geometric loop interaction via splitting and joining, sometimes called loop
fusion. An elementary two-to-one process of this sort is shown in Fig. 2 and
the corresponding world-sheet geometry goes under the name of a trinion,
or of a ‘pair of pants’. This depiction of the physical process immediately
suggests where to look for its canonical signature. In analogy with the pre-
viously discussed case of a state correspondence realised by a defect line,
the trinion interaction is expected to define an isotropic submanifold within
the triple Cartesian product of the phase space Pσ,g, composed of triples
of loops with momentum, subject to gluing conditions that capture the de-
tails of the loop fusion (such as, e.g., the (dis)continuity of the embedding
fields and their tangent maps). Equipped with the transgression map, we
anticipate, moreover, the existence of an isomorphism between the tensor
product of pre-quantum bundles associated with the in-coming states and
the one for the out-going state. The idea laid out above is, in fact, a (simpli-
fied) restatement of some basic elements of Segal’s categorial quantisation
scheme for two-dimensional CFT, advanced in [22] (cf. also Refs. [30, 59]
for a lucid account), in which Hilbert spaces would be functorially assigned
to connected components of the boundary of the world-sheet representing
the in-coming and out-going loops under fusion, and linear operators acting
between tensor products of the in-coming Hilbert spaces and those of the
out-going Hilbert spaces would be associated to the two-dimensional world-
sheet cobordism. That the surface transport operators (obtained from the
previously discussed differential characters by pulling the target-space gerbe
back to a proper cobordism, with ∂Σ given by a disjoint union of circles)
realise this scheme in the defect-free setting jointly with the transgression
map has been known since Gawędzki’s seminal paper [5] and its counter-
part [17] for the case of an embedded boundary defect (or, equivalently, an
open world-sheet). Seen from this perspective, the findings of the recent
survey [29] form a logical completion of the former analyses, extending them
to arbitrary (decorated) world-sheets. Thus, for the trans-defect fusion of
untwisted loops, representing states from various phases of the σ-model CFT
that coalesce at a defect embedded in the interaction geometry, we find
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Theorem 8 [29] Let I�eB � J � B� be the subset in P�3
σ,g composed of triples

of loops with momentum in the targetM � �M,g,G�, subject to relations (of
the DGC and gluing type) determined by the data of the G-bi-brane B and
those of the �G,B�-inter-bi-brane J and imposed in a (self-evident) manner
that imitates the imposition of pair-wise DGCs along the three defect lines
`1,2, `2,3 and `1,3 in Fig. 2, and of the additional gluing constraint14 at the
two defect junctions  and - in the same figure. The subset is isotropic with
respect to the symplectic form

Ω��

σ,g �� pr�1Ωσ,g � pr�2Ωσ,g � pr�3Ωσ,g

on P�3
σ,g, defined in terms of the canonical projections pri � P�3

σ,g � Pσ,g, i >
�1,2,3�. Furthermore, the background B � �M,B,J � canonically induces a
bundle isomorphism

Jσ,�eB�J �B� � �pr�1Lσ,g a pr�2Lσ,g� SI�eB�J �B�
�

ÐÐ� pr�3Lσ,gSI�eB�J �B� .

The universal character of the previous findings is confirmed by the in-
spection of the so-called N -twisted sector Pσ,B;N of the σ-model on a world-
sheet with time-like defect lines, of prime relevance to the study of orbifold
target spaces, as in Refs. [60, 61]. States from Pσ,B;N are piece-wise smooth
loops with momentum in the target M � �M,g,G�. The finite number N of
discontinuities of the loop embedding map and its momentum field model
discrete jumps of the Cauchy data of classical field configurations on a cylin-
drical world-sheet with N time-like defect lines, the data being localised at
equitemporal slices transversally intersecting the defect lines15. Such Cauchy
data can be compactly encoded by an �N � 2�-tuple �X,p, qk S k > 1,N� in
which X � S1

� M is a piece-wise smooth embedding map, and p is a
piece-wise smooth normal 1-form field on its image, both with N jumps de-
termined (via the maps ια and a suitable DGC) in terms of the N points
qk > Q in the world-volume of the G-bi-brane associated with the defect
that sets the N -fold twist of the sector. As in the untwisted setting, the
first-order formalism gives us a symplectic 2-form on the space of N -twisted
states, to wit,

Ωσ,B;N ��X,p, qk�� �
2π

S
0

dϕ �dpµ , dXµ� �
2π

S
0

dϕ �X�∂ϕ ¸HX� �
N

Q
k�1

ω�qk� ,

cf. [29], and we readily establish
14 The gluing constraint ensures that the endpoints of all the half-loops related by the

piece-wise DGCs and joining at a given defect junction descend from a single point
in the world-volume of J .

15 Hence, the discontinuities are determined by a variant of the DGC.
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Theorem 9 [29] The pair �G,B� canonically induces a line bundle L�G,B�;N �

LB;NM over the N -twisted loop space LB;NM with (local) coordinates
�X,qk S k > 1,N� as above. The bundle is equipped with a connection
©L�G,B�;N

of curvature

curv�©L�G,B�;N
���X,qk�� �

2π

S
0

dϕ �X�∂ϕ ¸HX� �
N

Q
k�1

ω�qk� .

Under the assignment �G,B�( L�G,B�;N , (cohomological) equivalence classes
of pairs �G,B� are mapped into isomorphism classes of bundles with connec-
tion.

The gerbe together with the bi-brane define a pre-quantum bundle of the
N -twisted sector of the σ-model,

Lσ,B;N �� π�Pσ,B;N
L�G,B�;N a �Pσ,B;N �C�� Pσ,B;N ,

where the trivial factor is endowed with the global connection 1-form given
by the first integral factor in the definition of Ωσ,B;N , and where πPσ,B;N

�

Pσ,B;N � LB;NM denotes the canonical projection.

The last result enables us to extend our canonical analysis of the splitting-
joining interaction to the twisted sector of the σ-model and thus confirms
the general applicability of the proposed mode of description of the loop
dynamics. This leads to an important aspect of the theory of defects that
sets it apart from, e.g., the theory of conformal boundary conditions16 and
boundary CFTs, namely, the fusion of defects. Restricting our attention to
the 1-twisted sector for the sake of simplicity and concreteness, we find

Theorem 10 [29] Let I�eBtriv � J � Btriv� be the subset in P�3
σ,B;1 composed

of triples of 1-twisted loops with momentum in the target M � �M,g,G�,
subject to relations (of the DGC and gluing type) determined by the data
of the trivial G-bi-brane Btriv � �M, idM , idM ,0, idG� (associated with the
distinguished identity (trivial) defect) and those of the �G,B�-inter-bi-brane
J and imposed in a (self-evident) manner that imitates the imposition of
(trivial) pair-wise DGCs along the three (invisible) defect lines `1,2, `2,3 and
`1,3 in Fig. 4, and of the additional gluing constraint17 at the defect junctions
 in the same figure. The subset is isotropic with respect to the symplectic
form

Ω��

σ,B;1 �� pr�1Ωσ,B;1 � pr�2Ωσ,B;1 � pr�3Ωσ,B;1

16 As observed in [62], non-intersecting circular defects can be understood as world-sheet
boundaries in the so-called folded σ-model.

17 The gluing constraint ensures that the jump coordinates qi > Q of the three 1-twisted
loops under fusion descend from a single point in the world-volume of J , to which
the defect junction  is mapped.
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on P�3
σ,B;1, defined in terms of the canonical projections pri � P�3

σ,B;1 �

Pσ,B;1, i > �1,2,3�. Furthermore, the background B � �M,B,J � canonically
induces a bundle isomorphism

JBσ,�eBtriv �J �Btriv�
� �pr�1Lσ,B;1 a pr�2Lσ,B;1� SI�eBtriv �J �Btriv�

�

ÐÐ� pr�3Lσ,BSI�eBtriv �J �Btriv� . (3.1)

Fig. 4. The basic splitting–joining interaction between 1-twisted states ψ1, ψ2 and
ψ3 (drawn in black, the momentum field implicit) across the defect graph composed
of the identity-defect lines `1,2, `2,3 and `1,3 carrying the data of Btriv. The defect
lines `i, i > �1,2,3�, defining the B-twist of the respective states ψi, join at the
defect junction  embedded in the world-volume of J .

The trinion vertex of the 1-twisted sector of the σ-model becomes inter-
esting in its own right as it captures the structure of the fusion ring on the
set of (equivalence classes of) conformal defects, which goes beyond their
mere set-theoretic enumeration offered by the investigation of defect graphs
composed of non-intersecting circular defect lines. Thus, the hands-on recon-
struction of the vertex, based on the explicit local presentation (in terms of
local data of the background �M,B,J �) of the relevant pre-quantum bundle
given in [29], is expected to provide us with novel insights into the algebra
of σ-model dualities. In the next section of this note, we substantiate this
claim by reviewing some recent advances in the gerbe-theoretic study of the
distinguished target-preserving dualities of the σ-model, i.e. its symmetries,
and their gauging.

4. Groupoidal internal symmetries and gauging

An in-depth understanding of the symmetry content of the physical
model has its obvious merits: It introduces the potent tools of represen-
tation theory and the theory of invariants into the arsenal of field-theoretic
methods, thus bringing natural structure into the state space of the model
and organising the derivation of its correlation functions. This is particularly
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eminent in two-dimensional CFT, with its infinite-dimensional loop-algebra
extensions of the fundamental Virasoro algebra of the (local) conformal sym-
metry, obtained from a current realisation of internal (rigid) symmetries.
But the rôle of the symmetry principle does not end there. Upon augmen-
tation to the form of the gauge principle, it opens avenues for a system-
atic construction of new models enjoying a local version of the former rigid
symmetry. All these generic aspects of field-theoretic symmetries find their
manifestation in the gerbe theory of the σ-model. The theory also brings to
the fore the particularities of the latter that stem from the existence of the
smooth geometric structure on its covariant configuration bundle, such as,
e.g., the generalised-geometric (in the infinitesimal picture) and groupoidal
(in the integrated, global picture) nature of its internal symmetries. The
lessons drawn from a thorough study of the σ-model in the context of the
gauge principle can subsequently be used towards demystification of the
intricate non-geometric backgrounds of loop dynamics.

It is customary in field theory to first look — in the spirit of Noether’s
original argument — for conditions of invariance of the action functional
under infinitesimal rigid field transformations, and only later address the
issue of their integrability to global symmetries of the model. Applying this
strategy to the two-dimensional σ-model on a world-sheet with a generic
embedded defect graph, and hence also a generic background B � �M,B,J �,
we readily establish that infinitesimal (internal) symmetries of the action
functional correspond to certain smooth sections of the disjoint union of
generalised tangent bundles

EF �� �TM `T�M� @ �TQ` �R �Q�� @TT � E�1,1�M @ E�1,0�Q @TT

over the fibre F � M @Q @ T of the covariant configuration bundle of the
σ-model, cf. Refs. [16, 33]. The appearance of the standard generalised
tangent bundle E�1,1�M and of the attendant generalised geometry à la
Hitchin and Gualtieri of Refs. [63,64] in the setting of a defect-free σ-model
was first noted and discussed at length in the important paper [65] by
Alekseev and Strobl18. In the presence of the full-blown 2-categorial con-
tent of B over the world-sheet, the relevant sections of EF are triples
K � �MK ` κ,QK ` k, TnK � composed each of a vector field K > Γ �TF �
with restrictions MK to M > �M,Q,Tn�, of which the first is Killing19 with
respect to g,

�LMK g � 0 ,
18 It is perhaps worth noting that the emergence of a generalised tangent bundle in the

description of a system coupled to an external gauge field is by no means peculiar to
the two-dimensional setting. Indeed, infinitesimal symmetries of the action functional
of a charged point-like particle in an external electromagnetic field are described by
smooth sections of the generalised tangent bundle E�1,0�M .

19 Here, and in what follows, �Ldenotes the Lie derivative.
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and subject to the alignment constraints

MK Sια�Q� � ια��QK � , QK S
πk,k�1n �Tn�

� πk,k�1
n� �TnK � ,

of a 1-form field κ > Ω1�M� satisfying the consistency condition

dκ � MK ¸H � 0 ,

and of a smooth function k > Cª�Q,R� that obeys the relations

dk � QK ¸ ω �∆Qκ � 0 , ∆Tnk � 0 ,

written in terms of the pullback operators ∆Q � ι�2 � ι�1 and ∆Tn �

Pnk�1 π
k,k�1�
n . The more immediate physical interpretation of the geomet-

ric objects K is revealed by considering their canonical lifts to the phase
space20 Pσ of the σ-model and to the pre-quantum bundle Lσ � Pσ. We
thus find that — as shown in [33] — to each such section of EF there
corresponds a Hamiltonian functional resp. a linear (first-order differential)
operator on the space of sections of the pre-quantum bundle, generating,
in the standard manner, an infinitesimal symmetry transformation on the
(classical resp. quantum) state space of the model, i.e. we have assignments

Γσ�EF �� Cª�Pσ,R� � K( hK ,

Γσ�EF �� End �Γ �Lσ�� � K( ÂOhK
, (4.1)

related to one another by the canonical quantisation map, cf. [3].
The set Γσ�EF � of all sections of EF of the type described above —

call them σ-symmetric — comes with an internal bilinear antisymmetric
operation, or a bracket, in analogy with the Lie bracket �MK1,

MK2� of Killing
vector fields MKi, i > �1,2� that describe infinitesimal symmetries of the
action functional of a point-like particle propagating in an ambient metric
space �M,g�. The bracket was found in [33] and can be written for Ki �
�MKi ` κi,

QKi ` ki,
TnKi� > Γσ�EF �, i > �1,2� in terms of its restrictions

BK1,K2G�H,ω;∆Q�SM � �MK1 ` κ1,
MK2 ` κ2�HC ,

BK1,K2G�H,ω;∆Q�SQ � �QK1,
QK2�` �QK1 ¸ dk2 �

QK2 ¸ dk1 �
QK1 ¸

QK2 ¸ ω

�
1
2 �QK1 ¸∆Qκ2 �

QK2 ¸∆Qκ1�� ,

BK1,K2G�H,ω;∆Q�STn � �TnK1,
TnK2�

20 In this section, we deliberately avoid specifying the sector of the state space.
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to the components of the extended target space. The first of them is deter-
mined by the Courant bracket of [66] twisted — in the sense of [67] — by
the gerbe curvature 3-form,

�MK1 ` κ1,
MK2 ` κ2�HC �� �MK1,

MK2�` ��LMK1
κ2 � �LMK2

κ1 �
1
2 d�MK1 ¸ κ2

�
MK2 ¸ κ1� � MK1 ¸

MK2 ¸H� .
Its relevance to the two-dimensional field theory in hand was noted already
in [65], and the relation to gerbes, based on the notion of a twisted gener-
alised tangent bundle of [63], leads to the following conclusion: The canonical
(twisted) Courant algebroid �E�1,1�M, ��, ��HC, αTM� of Refs. [66,68,69] (with
the additional ingredient — the anchor map αTM � E�1,1�M � TM — given
by the canonical projection) is a natural generalisation of the standard struc-
ture �TM, ��, ��� in the presence of a gerbe over M . Its naturality rests on
the fact that it accommodates (in a ‘minimal’ fashion) infinitesimal auto-
morphisms of the target �M,g,G� just as the Lie algebra of Killing vector
fields accommodates infinitesimal isometries of �M,g�. When viewed from
this perspective, the complete structure �Γσ�EF �, B�, �G�H,ω;∆Q�, αTF � (with
the self-explanatory definition of the anchor αTF � EF � TF ), dubbed the
�H, ω;∆Q�-twisted bracket structure on Γσ�EF � in [33], can be understood
as a natural algebraic structure over the extended target F in the presence
of the full 2-category BGrb©�F � that captures automorphisms of the latter
and thus generalises the Lie algebra of infinitesimal isometries of the target
space. This interpretation is further substantiated by an exhaustive study
of the rôle of local (hypercohomological) data of �G,B,J � in the Hitchin-
dual (understood in the sense of [63]) description of the �H, ω;∆Q�-twisted
bracket structure on Γσ�EF �, reported in [33]. As an additional consistency
check, one verifies that G-bi-brane data (global or local, depending on the
mode of description of E�1,1�M) canonically define a morphism between the
(twisted) Courant algebroids associated with the two phases of the σ-model
separated by the defect carrying the data of the G-bi-brane.

Aided by the intrinsically geometric nature of the σ-model, we lift the
algebraic structure on Γσ�EF � to the state space of the theory, to wit,
Theorem 11 [33] The �H, ω;∆Q�-twisted bracket structure �Γσ�EF �,
B�, �G�H,ω;∆Q�, αTF � induced over the extended target space F of the σ-model
in the presence of the 2-category BGrb©�F � is homomorphically mapped,
via the canonical lift of the tensor fields, to the Poisson subalgebra, within
�Cª�Pσ,R�,��, ��Ωσ�, of Noether charges associated with infinitesimal sym-
metries engendered by elements of Γσ�EF �, i.e. we have, for any two
σ-symmetric sections Ki, i > �1,2� and for the corresponding Noether
charges hKi ,

�hK1 , hK2�Ωσ � hBK1,K2G
�H,ω;∆Q� .
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It can be further lifted homomorphically to the commutator subalgebra, within
�End�Γ �Lσ�, ��, ���, of the corresponding charge operators, whereby we ob-
tain, for the charge operators ÂOhKi

associated to the hKi ,

� ÂOhK1
, ÂOhK2

� � ÂOh
BK1,K2G

�H,ω;∆Q�
.

The canonical interpretation carries over to the interaction picture in which
the data of the background B, upon pullback to an arbitrary defect graph
embedded in the world-sheet interaction geometry, are seen to give rise to
an intertwiner between representations, furnished — respectively — by the
in-coming and out-going state spaces under fusion, of the �H, ω;∆Q�-twisted
bracket algebra of infinitesimal symmetries. In other words, the symplecto-
morphism defined by the isotropic interaction subspace within the Cartesian
product of phase spaces under fusion transforms the Noether charges act-
ing on the in-coming states into their counterparts acting on the out-going
states, and an analogous statement holds for the associated bundle map
that relates sections of the product pre-quantum bundles restricted to the
interaction subspace. An important example of the situation just described
is the multi-phase WZW σ-model with the maximally symmetric defects
of [27], transmissive to the full bi-chiral Kac–Moody symmetry algebra of
the defect-free model. The complete structure of the relevant background,
required to define the model in the presence of a self-intersecting defect
graph, was discussed at length in [32] (cf. also the earlier paper [31] that
deals with the case of the target group SU�2�).

The infinitesimal action of the Lie algebra of the Killing vector fields on
a given metric manifold integrates, at least locally, to the action of a (local)
isometry group. Our hitherto findings prompt a natural question as to the
integrability of the �H, ω;∆Q�-twisted bracket structure on Γσ�EF �. On the
present level of generality, the question is very hard to answer, cf., e.g., [70]
for a discussion of this issue in the ‘tamer’ category of Lie algebroids. We
may, on the other hand, specialise to circumstances of immediate physical
relevance. Thus, whenever we can choose a basis �Ka�a>1,D in the R-linear
span of σ-symmetric sections of E�1,1�M in which the (untwisted) Courant
bracket assumes the simple form

�Ka,Kb�C � fabcKc

with fabc the structure constants of the Lie subalgebra g spanned by the
corresponding Killing vector fields MKa � αTM�Ka�, the integrated structure
for the thus defined Lie algebroid g%M , known as the action algebroid, is that
of the action groupoid G%M for G obtained through the exponentiation of
the Lie algebra g, cf. [71], as well as Refs. [16, 33] for an adaptation of the
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general framework to the context of interest. The groupoid is just the small
category with object and morphism sets

Ob�G%M� �M , Mor�G%M� � G �M ,

with the unit map idm � �e,m�, with the source map s�g,m� � m and
the target map t�g,m� � `g�m� � g.m determined by a (left) action `� �

G�M �M (whence its name), and with the inverse map �g,m�( �g,m��1
�

�g�1, g.m�. Finally, it is equipped with the composition �h, g.m� X �g,m� �
�h � g,m� that encodes the group operation in G. It is an example of a
Lie groupoid, with all structure maps smooth and the source and target
maps given by surjective submersions. The action algebroid is the so-called
tangent Lie algebroid of G%M . Returning to the original problem, it seems
natural to restrict our attention to a situation in which there exists a basis
�Ka�a>1,D in Γσ�EF � with the property

BKa,KbG�H,ω;∆Q�
� fabcKc ,

so that the �H, ω;∆Q�-twisted bracket structure can be homomorphically
identified with the action algebroid g%F . The significance of such a re-
striction follows from the analysis of the conditions of gaugeability of in-
ternal symmetries of the σ-model in the presence of defects, reported in [16]
(cf. also [33]), to which we turn next.

One of the basic constructive methods of CFT (or any field theory, for
that matter), and a key guiding principle in the exploration of the moduli
space of consistent CFTs, is the Gauge Principle, which consists in promot-
ing a rigid symmetry of the theory to the rank of a local one. In the case
of a discrete symmetry, this boils down to identifying (locally) field con-
figurations related by the action of the symmetry group and passing to a
suitable quotient of the original state space, whereby a new class of states
emerges, absent from the parent theory — the so-called twisted states. In
the geometric setting of the σ-model, the nature of the twisted sector is
most straightforward to elucidate: Twisted states are associated with those
patch-wise smooth embeddings of the world-sheet in the parent target space
whose discrete jumps, localised along arbitrarily dense networks of disconti-
nuity (or defect) lines, are determined by the action of the discrete symmetry
group, and hence become smooth in the quotient. The symmetry group is
usually termed the orbifold group21 in this context, cf. Refs. [60,61]. In the
case of a continuous symmetry group G, the situation is more subtle as the
gauging entails the introduction of additional physical degrees of freedom

21 Whenever a discrete group of internal symmetries is enhanced by the world-sheet
parity group Z2, the ensuing product structure is referred to as the orientifold group,
cf. Refs. [72, 73].
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that mediate the symmetry, namely, those of the gauge field. The gauge
field is a collection of locally smooth 1-forms22 on the space-time Σ of the
theory, induced (through local sections) from a connection on the principal
G-bundle G0 P� Σ, and the ‘mediation’ of the symmetry transformations
is explicitly realised through the passage from the covariant configuration
bundle Σ �F � Σ of the parent field theory, via its principal G-extension
P � F � Σ, to the associated bundle P �G F � Σ. It is the smooth sec-
tions of the latter bundle, P �G F � Σ �F , that are to be identified with
fields of the gauged theory. In this language, the twisted sector is produced
by topologically nontrivial principal G-bundles. Upon specialisation to the
σ-model, we thus arrive at the chain of extended targets

Σ �F Ð� P �F Ð� P �G F

that have to be constructed prior to passing to the quotient geometry Σ �

F ~G. The significance of topologically nontrivial gauge configurations in the
construction of the quotient, or coset σ-model was first emphasised in [74].

Clearly, realising the purely geometric transition indicated above, in itself
a fairly straightforward task, does not give the final answer to the field-
theoretic problem in hand. The strategy of its resolution can be divided
into the following three stages, which at the same time display the nature
of the obstructions that can arise:

• finding a consistent coupling between the various components of the
parent σ-model background and an arbitrary gauge field, with view
to defining a suitable extension of the former over P �F — here, the
standard minimal-coupling prescription fails in general, and so a more
intrinsic principle has to be conceived;

• lifting the geometric action of the symmetry group from the base
F of the parent background to the 2-categorial structure �G,B,J �
over it — this is tantamount to endowing �G,B,J � with the so-called
G-equivariant structure, a procedure that may turn out to be coho-
mologically obstructed;

• descending the coupled background–gauge-field complex to the associ-
ated bundle P�G F � F and, subsequently, the whole σ-model to the
coset F ~G — even in the case of a topologically trivial gauge field,
this calls for the same structure on �G,B,J � as in the previous point.

All these issues were examined in great detail in a series of papers by
Gawędzki et al., [15, 16, 18, 75, 76], and in the pioneering paper [19] on ori-
entifold gerbe theory. In the remainder of this note, we review the main

22 In general, they do not glue up to a globally defined 1-form. This happens solely for
trivial principal G-bundles over the space-time.
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results of Refs. [15, 16] as they are the first to discuss the gauging of con-
tinuous symmetries in the gerbe-theoretic language. The general methods
developed therein readily encompass the simpler discrete cases. Moreover,
the papers also contain a hands-on construction of the relevant objects in
the setting of the WZW σ-model with a simple 1-connected Lie-group target
G (and the non-anomalous AdG internal symmetry as the symmetry to be
gauged).

The first stage of the gauging procedure is the simplest to accomplish,
and hints can be extracted from the inspection of a G-invariant topologi-
cally trivial (tensorial) background and a topologically trivial (1-form) gauge
field. In this distinguished case, the minimal-coupling prescription works,
and can be employed to establish conditions of gaugeability of the infinites-
imal variant of the symmetry, captured by the Lie algebra g (with structure
constants fabc) of the symmetry group G. These are the conditions necessary
and sufficient for the minimally coupled action functional of the σ-model to
be invariant under the natural action of g. They take the form

�LMKa
κb � fabc κc ,

MKa ¸ κb � �
MKb ¸ κa , �LQKa

kb � fabc kc ,

and are to be imposed on the smooth σ-symmetric sections Ka, a > 1,dimg
of EF forming the basis of g, introduced in the context of integrability
of infinitesimal rigid symmetries of the σ-model23. The first two of these
conditions were obtained independently in Refs. [77,78] in the setting of the
defect-free σ-model, and the remaining one was derived in [79] for the special
case of a boundary defect. They admit a straightforward interpretation in
the framework of g-equivariant cohomology for F (e.g., in the Cartan model
thereof), cf. Refs. [79,80,81]. In generalised-geometric terms, they translate
into the requirement that the R-linear span of the Ka form a Lie subalgebroid
within �Γσ�EF �, B�, �G�H,ω;∆Q�, αTF � isomorphic with the action algebroid
g%F .

The main lesson that can be drawn from the analysis outlined contains
an answer to the first point on our list: The imposition of the above gauge-
ability constraints ensures the invariance of the σ-model with an arbitrary
(G-isometric) background B � �M,B,J � under the infinitesimal transfor-
mations from g iff the background is coupled to the topologically trivial
gauge field24 A � Aa a ta > Ω

1�Σ�a g as per

�M,B,J �( �MA,BA,JA� ,
where

MA �� �Σ �M,pr�2g,pr�2G a IρA� , BA �� �Γ �Q,Çια, ωA,pr�2Φa JλA� ,
23 The existence of the Ka is taken as a prerequisite of the gauging procedure.
24 The field is written in terms of the standard generators ta, a > 1,dimg of g, subject

to the structure relations �ta, tb� � fabc tc.
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JA �� �VΓ � Tn, �Çπk,k�1
n S k > 1, n� ,pr�2ϕn S n > NC3� ,

with

ρA �� pr�2κa , pr�1A
a �

1
2 pr�2 �MKa ¸ κb� pr�1 �Aa ,Ab� ,

ωA �� pr�2ω � Ç∆QρA � dλA , λA �� �pr�2�ka�pr�1�Aa�

and

Çια �� �idΓ , ια� � Γ �Q� Σ �M , Ç∆Q ��Çι�2 �Çι�1 ,

Çπk,k�1
n �� �idVΓ

, πk,k�1
n � � VΓ � Tn � Γ �Q,

all written in terms of the canonical projections pr1 � Σ � F � Σ and
pr2 � Σ �F � F (restricted suitably), and for VΓ ` Γ the set of vertices
(i.e. junctions) of the embedded defect graph. Finally, JλA is a trivial line
bundle with the global connection 1-form λA. Extension to an arbitrary
gauge field is now straightforward: It consists in replacing the covariant
configuration bundle Σ �F in the above formulæ with its extended version
P �F , the gauge field A with the pullback, along the canonical projection
pr1 � P �F � P of the globally defined principal G-connection A � Aa a

ta > Ω1�P� a g, and the extended maps Çια and Çπk,k�1
n on Σ � F by their

counterparts defined on P�F . This yields the desired principal G-extension
of the parent background,

ÇBA � �ÈMA, ÇBA, ÇJA� ,

over the extended covariant configuration bundle P �F .
The last Ansatz promotes us to the second stage in which the composite

left G-action G��P�F �� �P�F � � �p.g�1, g.m�, induced from the assumed
left G-action on F and the canonical right G-action on P, is to be lifted to
ÇBA. This is a sine qua non condition for a consistent descent from the ex-
tended covariant configuration bundle P � F to its quotient P �G F . The
condition can be met by endowing the parent background B with the so-
called G-equivariant structure. A detailed clarification of the latter concept
falls beyond the scope of the present review, and so we shall content ourselves
with its intuitive description. Thus, from the categorial vantage point, the
said structure is a choice of distinguished 1- and 2-cells from the 2-category
BGrb© �NY�G%F �� of Abelian bundle gerbes with curving and Hermitian
connection supported over the simplicial G-space NY�G%F � given by the
nerve of the small category G%F , understood in the sense of [82]. In short,
the 1- and 2-cells define a self-coherent realisation of G on the �G, Φ,ϕn� that
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is — on the one hand — compatible with the associative product structure
on the set G, and — on the other hand — enforces the desired property of the
(inter-)bi-brane, which is that of an ‘intertwiner’ between the said realisa-
tions on restrictions of the gerbe supported over neighbouring phases of the
σ-model under consideration. From the cohomological vantage point, the G-
equivariant structure is an extension of the Čech–Deligne data representing
�G,B,J � to a cochain from the tricomplex obtained from the Čech–Deligne
bicomplex through a standard extension in the direction of G-cohomology
(which requires working with certain natural simplicial refinements of the
open covers of F entering the definition of the original Čech–Deligne data,
cf. Refs. [16, 83]). The cohomological perspective is particularly suitable
for the discussion of obstructions against the existence of a G-equivariant
structure and for the enumeration of inequivalent such structures. An ex-
tensive treatment of this classificatory issue is presented in Refs. [15, 16].
In summary, we stress the crucial feature of the structure which is that it
determines the sought-after lift of the action of the symmetry group to the
extended background ÇBA obtained earlier. An alternative and independent
justification for its introduction comes from the analysis of the descent of the
σ-model coupled to a topologically trivial gauge field from P�G F � Σ �F
to the coset space Σ �F ~G, cf. [16].

At this point, it remains to descend the G-equivariant extended back-
ground ÇBA to the smooth quotient P �G F , that is to say to canonically
induce, over P�G F , another background — call it BA — whose (hyperco-
homological) equivalence class is to be determined uniquely by the parent
structure ÇBA. General conditions under which an induction effect of this
kind is possible in the 2-category BGrb©�YM � supported over a surjec-
tive submersion πYM � YM � M over a manifold M were found in [14].
They constitute the content of the principle of descent25 which establishes
an equivalence between the 2-category BGrb©�M � and a distinguished 2-
subcategory Desc�πYM � within BGrb©�YM � termed the descent 2-category
and consisting of (0-, 1- and 2-) cells that behave ‘trivially’ with respect to
the pullback cohomology, of the kind considered in [7], defined by πYM (in
conjunction with the canonical projection maps) over the simplicial space
Y�Y�M with components Y�n�M given by the n-fold Cartesian powers of
YM fibred over M . In the context of interest, which is that of the surjec-
tive submersion YM � P � F � P �G F � M and of the simplicial space
Y�Y�M canonically G-equivariantly isomorphic with the nerve of the action
groupoid G%�P�F �, the Principle of Descent reduces to an explicit identifi-
cation of the specific G-equivariant structure on a background ÇB� over P�F
that is necessary and sufficient for (the G-equivariant equivalence class of)

25 Cf. [53] for a more recent account that offers a neat abstraction of the notion of a
gerbe (and of a bundle, etc.).
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ÇB� to induce a unique (up to equivalence) background B� over the quotient
P �G F . The truly remarkable feature of the gauging scheme outlined in
the foregoing paragraphs is that the assumed existence of an arbitrary G-
equivariant structure on B ensures that ÇBA is just of the desired type, i.e. it
belongs to the relevant descent 2-subcategory over P�F . In accordance with
the previous considerations, this enables us to define the gauged σ-model in
terms of26 the induced background BA. Its action functional is now readily
proven invariant under the action of the gauge group Γ �P �AdG

G�.
The very last step in the gauging procedure, that is the field-theoretic

transition from the gauged σ-model with the covariant configuration bundle
P �G F to the σ-model with the quotient covariant configuration bundle
Σ �F ~G is — arguably — the least understood one. It entails integrating
out the gauge field, a procedure with no clear-cut status within the geomet-
ric framework advertised heretofore. The procedure may well necessitate a
conceptual enhancement of the latter capable — among other things — of
incorporating a new geometric degree of freedom induced in the process, to
wit, the dilaton. This seems to call for a further ‘generalisation’ of Hitchin’s
generalised geometry that seeks to unify the metric and gerbe (resp. gerbe-
related) structure present over the target space of the σ-model. Such a con-
ceptual enhancement of gerbe theory appears to be inevitable also from the
point of view of possible generalisations of the gauge principle to bona fide
dualities of the σ-model as these are bound to mix the various components
of the background, including the dilaton. It is tempting to try to transpose
the highly structured approach to gauging laid out in Refs. [15,16] into this
— as yet — largely unexplored domain of loop physics, and thus, ultimately,
pave the way to a rigorous study of non-geometric loop backgrounds. This
temptation is certain to greatly stimulate further development of the theory
of gerbes.

5. Summary and prospects

In the present note, intended as a modest and — unavoidably — limited
review of the recent progress in the gerbe theory of the σ-model, I sought to
emphasise the naturality and efficiency of the full-fledged 2-categorial gerbe-
theoretic framework in the description of the loop dynamics of the two-
dimensional non-linear σ-model on an arbitrary (defect-decorated) space-
time, and in the study of the associated (generalised) geometry of its covari-
ant configuration bundle, leading — via the concept of a σ-model duality
— to a generalisation of the Riemannian paradigm of (globally) smooth
geometry.

The discourse developed herein merely skimmed or even altogether failed
to mention a vast number of exciting aspects of the theory that are currently

26 The metric, coupled minimally to A, descends to the quotient without further com-
plications.
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under investigation. These include:

• a generalisation of the gauge principle encompassing dualities of the
σ-model (capturing, e.g., the (non-)geometry of T-folds);

• an augmentation of the gerbe-theoretic framework accommodating
other components of the σ-model background, such as, e.g., the dila-
ton;

• the structure of the fusion algebra of defects, as encoded by the inter-
bi-brane data (in particular, in the setting of the WZW σ-model in
the presence of the maximally symmetric defects);

• a ‘holographic’ relation between gerbes and higher-categorial struc-
tures (e.g. those associated with certain topological field theories,
such as, for instance, the three-dimensional Chern–Simons theory);

• the gerbe-theoretic aspect of the issue of criticality of the σ-model
background (to be viewed in the context of the generalised Ricci flows
of Refs. [84,85]);

• incorporation of supersymmetry in the gerbe-theoretic picture of the
loop dynamics;

• the rôle of the gerbe in determining the nature of the emergent spec-
tral non-commutative geometry on the target space of the σ-model
(as suggested by the preliminary findings of [86], obtained along the
lines of the seminal paper [87]).

The sheer number and the diversity of the open questions listed makes it
apparent that the gerbe theory of the σ-model is antipodally remote from
being a dead end in the rigorous study of the loop dynamics.
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