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We describe the statistical mechanics of a melting crystal in three di-
mensions and its relation to a diverse range of models arising in combina-
torics, algebraic geometry, integrable systems, low-dimensional gauge the-
ories, topological string theory and quantum gravity. Its partition function
can be computed by enumerating the contributions from noncommutative
instantons to a six-dimensional cohomological gauge theory, which yields a
dynamical realization of the crystal as a discretization of spacetime at the
Planck scale. We describe analogous relations between a melting crystal
model in two dimensions and N = 4 supersymmetric Yang–Mills theory
in four dimensions. We elaborate on some mathematical details of the
construction of the quantum geometry which combines methods from toric
geometry, isospectral deformation theory and noncommutative geometry
in braided monoidal categories. In particular, we relate the construction of
noncommutative instantons to deformed ADHM data, torsion-free modules
and a noncommutative twistor correspondence.
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1. Introduction

A classical instanton is a connection on a smooth SU(r) vector bundle E
over an oriented Riemannian four-manifold X with anti-self-dual curvature
two-form FA, i.e.

∗FA = −FA , (1.1)

where ∗ denotes the Hodge duality operator on X. Such field configurations
are labelled by their “topological charge”, which is the instanton number
defined as the second Chern class
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c2(E) =
1

8π2

∫
X

Tr (FA ∧ FA) = k ∈ H4(X,Z)

of the bundle E. (The first Chern class c1(E) = 0.) The prototypical exam-
ple is the case of instantons on the four-sphere X = S4. In this case, there
are one-to-one correspondences between the following classes of objects:

1. Instantons on the Euclidean four-plane R4 of topological charge k and
finite Yang–Mills energy.

2. Rank r holomorphic vector bundles E over the complex projective
plane P2 with c2(E) = k which are trivial on a projective line P1 at
infinity.

3. Linear algebraic ADHM data.

4. Rank r holomorphic vector bundles E over the projective three-space
P3 with c2(E) = k which are trivial on a P1 at infinity, have vanishing
cohomologyH1(P3, E(−2)) = 0, and satisfy a certain reality condition.

The first equivalence follows since one can glue together local connections
on the northern and southern hemispheres of S4, with suitable boundary
conditions at infinity in R4, to produce a global instanton [1]. The second
equivalence is known as the Hitchin–Kobayashi correspondence and it gives
a construction of the instanton moduli space in algebraic geometry [2]. The
third equivalence gives an explicit construction of the instanton connections
on R4 through solutions of the celebrated ADHM matrix equations [3]. The
fourth equivalence yields the Atiyah–Penrose–Ward twistor correspondence
which can be used to explicitly construct instantons on S4 [4].

The anti-self-duality equations in Eq. (1.1) have a natural generalization
to higher-dimensional Kähler manifoldsX called the Donaldson–Uhlenbeck–
Yau equations [5]. Irreducible gauge connections which solve these equations
are in one-to-one correspondence with stable holomorphic vector bundles
over X; they naturally arise in compactifications of heterotic string theory
as the condition for at least one unbroken supersymmetry in the low-energy
effective field theory. Of particular interest are the cases in which X is
a toric manifold, like the original example R4 ∼= C2. In this case, the
torus symmetries of X lift to the instanton moduli space and the power-
ful techniques of equivariant localization can be used to compute the exact
instanton contributions to the partition functions of supersymmetric gauge
theories on X [6, 7, 8]. Besides their intrinsic interest as exactly solvable
models which capture physical regimes of more realistic quantum field theo-
ries, these partition functions also enumerate BPS bound states of D-branes
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in Type II string theory in certain regions of the moduli space. Instanton
counting has also found applications in geometry through the computation of
enumerative invariants of manifolds, e.g. the Seiberg–Witten [6] and Donald-
son invariants [9] when dimCX = 2, and the Donaldson–Thomas invariants
when dimCX = 3 [10, 11].

The enumeration of instantons on a general toric d-fold X in the ap-
proach of [8,11] is somewhat heuristic. It begins with the local enumeration
of (generalized) noncommutative instantons on each torus invariant open
patch Cd ⊂ X. A Moyal deformation of these patches is simple enough to
enable explicit construction of the instanton connections in this case, whose
contributions to the partition function can then be assembled to global quan-
tities using the gluing rules of (commutative) toric geometry. This construc-
tion gives rise to a crystalline structure of spacetime, which as an integrable
model of lattice statistical mechanics has many interesting features in its own
right. We will interpret this crystal model as a quantization of spacetime ge-
ometry at the Planck scale, induced by quantum gravitational fluctuations
which are effectively encoded in the dynamics of noncommutative instan-
tons. When d = 3 we will give a very precise dynamical realization of all
these correspondences, while for d = 2 we can give an explicit construction
of the instanton moduli space and its associated gauge connections.

Although this heuristic picture is nice and certainly very useful, one
would like to go beyond it somewhat by finding a global notion of “noncom-
mutative toric variety”, and the construction of instantons thereon. This
would cast the picture of dynamical quantum geometry into the more pre-
cise and rigorous framework of noncommutative geometry. Another reason
is that such varieties naturally arise in string geometry. For example, chiral
fermions on a “quantum curve” can be embedded in string theory as a col-
lection of intersecting D-branes in a background supergravity B-field. Such
a configuration is described mathematically by a holonomic D-module [12],
roughly speaking a representation or sheaf over an algebra of differential op-
erators. In certain instances, there is an equivalence between categories of
D-modules and of modules on a noncommutative variety. Our constructions
give examples of such noncommutative varieties, and hence of the quantum
geometries eluded to in [12]. The simplest example of this correspondence
is between the right ideals of the Weyl algebra C[z, ∂z], i.e. the algebra of
differential operators on the affine line, and line bundles on a noncommu-
tative P2 [13]. In turn, vector bundles on noncommutative P2 correspond
to instantons on a noncommutative R4 [14, 15]. Hence the construction of
instantons on noncommutative toric varieties produces a sharper picture of
the dynamically induced quantum geometry.
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2. Crystal melting in three dimensions

In this section, we introduce the melting crystal model and describe its
statistical mechanics. We relate it to enumerative problems in combina-
torics and toric geometry, and explain its interpretation in string theory.
We then relate the model to an integrable hierarchy and recast it as a ma-
trix model, which leads into our first gauge theory characterization of the
crystal in terms of Chern–Simons theory. We defer describing the relation-
ship with noncommutative instantons to later sections, and begin with the
three-dimensional case wherein the complete story is best understood.

2.1. Statistical mechanics and random plane partitions

The model of a melting crystal corner was introduced in [16] and is
depicted in Fig. 1. The crystal is a rectangular array of unit cubes located
in the positive octant of R3. It melts starting from its outermost right-hand
corner according to the melting crystal rule: a cube located at (I, J,K) ∈
Z3
≥0 ⊂ R3 evaporates if and only if all cubes located at (i, j, k) with i ≤ I,

j ≤ J and k ≤ K have already evaporated; this rule roughly states that
an atom can be removed only if all atoms on top of it have been removed.
Removing each atom from the corner of the crystal contributes a factor
q = e−µ/T to the Boltzmann weight, where µ is the chemical potential and
T is the temperature.

Fig. 1. Melting crystal corner in three dimensions.

We can map this model onto a combinatorial problem by piling cubes in
the corner of a room as they are removed from the crystal. This is depicted
in Fig. 2. The melting crystal rule implies that piling πi,j cubes vertically
at position (i, j, 0) gives a rectangular array of positive integers π = (πi,j)
such that the entries of π decrease as we move along the rows and columns,
i.e. πi,j ≥ πi+1,j and πi,j ≥ πi,j+1. Such an object is called a plane partition
or three-dimensional Young diagram.
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Fig. 2. A three-dimensional Young diagram.

Plane partitions generalize the notion of ordinary partition or Young
diagram; recall that this is an increasing sequence of positive integers, λ =
(λ1, λ2, . . . ), λi ≥ λi+1 ≥ 0, where λi gives the length of the ith row in the as-
sociated Ferrers diagrams of the semi-standard Young tableaux T of shape λ.
There are, in fact, two ways in which ordinary partitions will play a role.
Firstly, the “diagonal slices” of a plane partition π, e.g. λ = (πi,i), define a
sequence of ordinary partitions obeying “interlacing relations”. Secondly, we
can consider three-dimensional Young diagrams with infinitely many boxes
which freeze along each coordinate direction to a two-dimensional Young
diagram projected in the respective coordinate plane.

The statistical mechanics of crystal melting is now defined in a canonical
ensemble in which each plane partition π has energy proportional to the
total number of cubes |π| =

∑
i,j≥1 πi,j . The canonical partition function is

then the generating function for plane partitions and is given by

ZC3 :=
∑
π

q|π| =
∞∑
k=0

pp(k) qk ,

where pp(k) is the number of plane partitions π with |π| = k boxes. This
enumerative problem was solved long ago by MacMahon with the result [17]

ZC3 =
∞∏
n=1

1(
1− qn

)n =: M(q) . (2.1)

The function M(q) is called the MacMahon function. It generalizes the
Euler function which is the generating function for partitions. From the
perspective of six-dimensional gauge theory that we shall take later on, the
integers pp(k) count the number of bound states of k D0-branes with a single
D6-brane wrapping C3. Then the gauge theory with partition function (2.1)
is dual to topological string theory on the target space C3 [16, 10,11].
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This statistical mechanics model is also intimately related to the theory
of symmetric functions. Given a partition λ as above, the Schur polynomial
in the variables x = (x1, x2, . . . ) is the formal power series sλ(x1, x2, . . . ) =∑

T x
T , with xT := xλ1(T ) x

λ2(T )
2 · · · . They constitute a special basis for

the algebra of symmetric functions, and are intimately connected to the
representation theory of symmetric and general linear groups [18, 17]. Of
central interest is the specialization of the Schur polynomials in N variables
to (x1, x2, . . . , xN ) = (1, q, . . . , qN−1), which is given by the hook-content
formula

sλ
(
1, q, . . . , qN−1

)
= qN(λ) dimq(λ) , (2.2)

where N(λ) =
∑

i≥1 (i− 1)λi and the q-hook formula

dimq(λ) =
∏

(i,j)∈λ

[N + j − i][
λi + λtj − i− j + 1

]
is the quantum dimension of the irreducible unitary representation of U(N)
associated to λ [19]. Here [n] = q(n−1)/2

(
qn/2−q−n/2

)/(
q1/2−q−1/2

)
denotes

the q-number associated to n ∈ Z.
The hook-content formula (2.2) implies the hook-length formula which

can be generalized to give [17]

sλ
(
1, q, . . . , qN−1

)
=
∑
πc

q|πc| ,

where the sum ranges over all column-strict partitions πc (equivalently re-
verse semi-standard Young tableaux) of shape λ, largest part at most N−1,
and allowing 0 as a part. Hence, the Schur specialization is a generating
function for column-strict plane partitions. For rectangular shapes λ, there
is a simple bijection between column-strict plane partitions of shape λ and
ordinary plane partitions of shape λ. However, there is no such simple corre-
spondence for arbitrary non-rectangular shapes. But the bijection does exist
in the reverse situation for N →∞. In the limit N →∞ the hook-content
formula (2.2) reduces to sλ(1, q, q2, . . . ) = qN(λ)

/∏
(i,j)∈λ [λi+λtj− i−j+1],

and we have ∑
πw

q|πw| = q−N(λ) sλ
(
1, q, q2, . . .

)
,

where the sum ranges over all weak reverse plane partitions πw of shape λ.

2.2. Toric Calabi–Yau crystals

This model can be generalized to a large class of melting crystals in the
following way. Let Γ be a finite trivalent planar graph, decorated by placing
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a three-dimensional partition πv each vertex v, and a two-dimensional parti-
tion λe representing the asymptotics of πv at each edge e emanating from a
vertex v; to each external leg of the graph Γ we assign the empty partition
λ = ∅. To each vertex we assign the Boltzmann weight q which weighs the
number of boxes; each edge e also has associated to it a formal variable Qe
weighing the total number of boxes. The partition function is obtained by
summing over all possible decorations by partitions and reads

ZX =
∑

Young tableaux
λe

∏
edges e

Q|λe|e

∏
vertices

v=(e1,e2,e3)

Mλe1 ,λe2 ,λe3
(q) , (2.3)

where
Mλ,µ,ν(q) =

∑
π : ∂π=(λ,µ,ν)

q|π| (2.4)

is the generating function for plane partitions π with boundaries λ, µ, ν of
sizesNλ, Nµ, Nν , i.e.Nλ is the height of the plane partition (from piling cubic
boxes), while Nµ (resp. Nν) is the extension towards the left (resp. right)
such that beyond Nµ (resp. Nν) the cross-section is frozen to µ (resp. ν).
When these boundary integers are non-vanishing, i.e. π is an infinite plane
partition, one must make sense of the box count |π| through a suitable
renormalization [16].

This combinatorial construction has a natural geometric meaning in the
setting of toric geometry. A complex varietyX is a toric variety of dimension
d if it densely contains a (complex) algebraic torus T = (C×)d and the
natural action of T on itself (by group multiplication) extends to a T -action
on the whole of X. The simplest examples are the torus T itself, the affine
space Cd, and the complex projective space Pd. If in addition X is a Calabi–
Yau manifold, i.e. X has trivial canonical line bundle c1(KX) = 0, then X
is necessarily non-compact.

Toric varieties are of great interest because much of their geometry and
topology are described by combinatorial data encoded in a planar toric web
diagram Γ defined as follows. The vertices v are the fixed points of the
torus action on X, with T -invariant open chart U ∼= Cd. The edges e rep-
resent T -invariant projective lines P1 joining pairs of fixed points v1 and v2.
The variety X is reconstructed from this data via a set of “gluing rules”,
which follow from the realization that the normal bundle determines the
local geometry of X near each edge, i.e. near each P1, the space X looks
like the bundle OP1(−m1) ⊕ · · · ⊕ OP1(−md−1) over P1 for some integers
mi which determine the transition functions between neighbouring patches.
The graph Γ has external legs if and only if X is non-compact; the external
edges are then dual to non-compact divisors in the geometry.
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This combinatorial information can be equivalently encoded in the dual
graph which defines the toric fan Σ ⊂ Zd of X. It consists of maximal
(polyhedral) cones σ which are dual to the vertices of Γ and which define a
toric open cover U [σ] of X, a set of d − 1-cones dual to edges, and so on.
One then specifies gluing rules along adjacent faces σ ∩ τ of cones σ and τ .
For the example of the complex projective plane X = P2, the fan Σ consists
of three maximal cones σ1, σ2, σ3, corresponding to the three open C2 charts
covering P2, with intersections between neighbouring two-cones giving the
one-cones σi∩σi+1 = τi (with indices read modulo 3), and triple intersection
the cone point σ1 ∩ σ2 ∩ σ3 = {0}. The dual graph Γ is a triangle.

The formal power series (2.3) enumerates the Donaldson–Thomas invari-
ants of the toric Calabi–Yau threefold X with web diagram Γ ; from a gauge
theory perspective, this partition function counts BPS bound states of D6–
D2–D0 branes with a single D6-brane wrapping X and D2-branes wrapping
the two-cycles of X. After the change of variables q = e−gs , the perturba-
tive expansion of (2.3) in gs gives the Gromov–Witten invariants of X and
coincides (up to normalization) with the partition function for topological
string theory on X [10]. Indeed, the generalized MacMahon function (2.4)
coincides (up to normalization) with the “topological vertex” of [20] in the
melting crystal formulation; this is proven by rewriting the sum over plane
partitions π as a sum over “diagonal” two-dimensional Young diagrams λ
weighted by powers of skew Schur functions [16].

The toric diagram for the affine space X = C3 is depicted on the left in
Fig. 3 and its partition function (2.3) is given in (2.1). The next simplest
example is the resolution of the conifold singularity x y − z w = 0 in C4,
whose web diagram is depicted on the right in Fig. 3. Using the general
prescription (2.3) one readily computes

Zconifold =
∑
λ

M∅,∅,λ(q)M∅,∅,λ(q)Q|λ|

=
∑
πv

q|πv |+
P

(i,j)∈λ (i+j+1)Q|λ| = M(q)2M(Q, q)−1 , (2.5)

where the generating function

M(Q, q) =
∞∏
n=1

1(
1−Qqn

)n
counts weighted plane partitions.

In general, a simple closed product formula is not anticipated for the
partition function (2.3). They only arise when the background X has no
compact divisors (or D4-branes). As the example (2.5) demonstrates, the
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conifoldC 3

Fig. 3. Toric diagrams for C3 and the resolved conifold.

partition function (2.3) is expected to contain the overall factor M(q)χ(X)

enumerating degree 0 curve classes (D0-branes) [10], where χ(X) is the topo-
logical Euler characteristic of X which coincides with the number of vertices
in the toric diagram Γ of X.

2.3. Integrability

The melting crystal model is an integrable system. This can be seen
through the free fermion representations of the partition functions (2.3)
[21, 22]. Introduce independent holomorphic complex fermion fields ψ and
ψ∗ in two dimensions. In the Neveu–Schwarz sector they have the mode
expansions

ψ(z) =
∑

m∈Z+1/2

ψm z
−m−1/2 and ψ∗(z) =

∑
m∈Z+1/2

ψ∗m z
−m−1/2

with the non-vanishing canonical anticommutation relations {ψm, ψ∗n} =
δm+n,0. The fermionic Fock space is built by the action of these mode
operators on the vacuum state |0〉 obeying ψn|0〉 = 0 = ψ∗m|0〉 for n ≥ 0
and m ≥ 1. It is naturally spanned by states labelled by Young tableaux;
given a two-dimensional partition λ = (λ1, . . . , λr) and its transpose λt, one
defines the basis states

|λ〉 =
r∏
i=1

ψ∗−λi+i−1/2 ψ−λti+i−1/2|0〉 .

The modes αn of the bosonized field

∂φ(z) = : ψ(z)ψ∗(z) : =
∑
n∈Z

αn z
−n−1 with αn =

∑
m∈Z

: ψn−m ψ∗m :

obey the Heisenberg commutation relations [αm, αn] = mδm+n,0. They can
be used to define vertex operators

Γ±(z) = exp

(∑
n>0

zn

n
α±n

)
.
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By using the expansion of (2.4) into Schur functions, summed over Young
diagrams, one can represent the partition functions (2.3) as particular vac-
uum correlation functions of these vertex operators. For example, direct
expansion of the infinite product in (2.1) gives the fermionic representation

ZC3 = 〈0|

(
0∏

n=−∞
Γ+

(
q−n

)) ( ∞∏
n=0

Γ− (qn)

)
|0〉 .

This identifies ZX as a tau-function of the one-dimensional Toda lattice
hierarchy [21]; the modes αn play the role of “Hamiltonians” in the usual
fermionic formulation for tau-functions of the integrable KP and Toda hier-
archies.

Natural candidates for explicit representations of tau-functions of in-
tegrable hierarchies are provided by partition functions of matrix models.
In [23, 24] it was shown that the expansions (2.3) can be written as parti-
tion functions of infinite-dimensional unitary one-matrix models (when the
underlying toric Calabi–Yau variety X has no compact divisors). For exam-
ple, the affine space partition function (2.1) can be expressed as the matrix
integral

ZC3 =
∫

U(∞)

dU detΘ(U |q) ,

while for the resolved conifold partition function (2.5) one has

Zconifold =
∫

U(∞)

dU det

(
Θ(U |q)
Θ(QU |q)

∞∏
n=1

(
1 +Q−1 U−1 qn

))
,

where the elliptic theta-function is given by

Θ(u|q) =
∞∑

j=−∞
qj

2/2 uj .

These formal expressions are defined as the N →∞ limits of the correspond-
ing eigenvalue integrals for the finite-dimensional unitary group U(N) with
the bi-invariant Haar measure dU ; the infinite unitary group here is then
formally the contractible one obeying Kuiper’s theorem. In [24] these matrix
model formulas are derived straightforwardly starting from the expansion of
Mλ,µ,ν(q) in skew Schur functions, using Gessel’s theorem to write the sum
as a Toeplitz determinant, and then using the fact that N ×N Toeplitz de-
terminants have well-known expressions as integrals over the unitary group
U(N). The rank here is infinite as we have to sum over all Young diagrams
λ, with no restrictions on the lengths of the rows λi, in the expansion of the
generating function (2.4).
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2.4. Finite rank crystal model and Chern–Simons gauge theory

It is natural to ask what is the meaning of the finite rank versions of
the unitary matrix integrals for the melting crystal partition functions ZX .
The answer leads to the somewhat unexpected appearance of a well-known
topological gauge theory in three dimensions. Consider Chern–Simons the-
ory on an oriented three-manifoldM with gauge group U(N). The partition
function is given by the functional integral

ZNCS(M) =
∫

DA e iSCS[A] ,

where

SCS[A] =
k

4π

∫
M

Tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)

for k ∈ Z is the Chern–Simons action for a gauge potential A of a connection
one-form on a (trivial) bundle over M . This gauge theory has a long history
as an exactly solvable quantum field theory which computes invariants in
three-dimensional geometric topology [25]. It is given exactly by its one-
loop (semi-classical) approximation, with the partition function and Wilson
loop observables localizing onto classical solutions of the Chern–Simons ac-
tion, which are given by flat connections of curvature FA = 0. When the
three-manifold is a Seifert fibration M → Σ, integration over the S1 fibre
degrees of freedom localizes the gauge theory onto a “q-deformation” of two-
dimensional Yang–Mills theory on the base Riemann surface Σ [26,27,28,29],
defined by replacing U(N) representation theoretic quantities in the usual
heat kernel expansion with their quantum analogs.

For example, Chern–Simons theory on the three-sphere M = S3, re-
garded as a circle bundle over the two-sphere Σ = S2 by means of the Hopf
fibration S3 → S2, is equivalent to q-deformed Yang–Mills theory on S2.
In this case, the Chern–Simons partition function can be reduced to an
N -dimensional integral which is equivalent to the Stieltjes–Wigert matrix
model defined by the Hermitian matrix integral [30,31,32]

ZNCS

(
S3
)

=
∫

u(N)

dH e−Tr log2H/2gs ,

where gs = 2π i
k+N . Using explicit expressions for the associated orthogonal

polynomials (the Stieltjes–Wigert polynomials), the matrix integral can be
computed explicitly with the result

ZNCS

(
S3
)

=
N−1∏
j=1

(
1− qj

)N−j
,
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where q = e−gs = e−2π i /(k+N). Unlike the more conventional Hermitian
matrix models with polynomial potentials, this model involves an undeter-
mined moment problem. In particular, it can equivalently be described by
the unitary matrix model [33]

ZNCS

(
S3
)

=
∫

U(N)

dU detΘ(U |q)

which is just the finite rank version of the unitary matrix model describing
the melting crystal model on C3. It follows that ZC3 = limN→∞ ZNCS(S3),
and hence the finite N crystal model may be regarded as the Chern–Simons
matrix model. From the perspective of topological string theory, this cor-
respondence is not so surprising, given that large N Chern–Simons gauge
theory describes the B-model dual to the A-model topological string the-
ory on X. In [23] it is shown that the spectral curve of the matrix model
in the thermodynamic limit describes the mirror geometry to the A-model
geometry.

This correspondence is interesting because the Chern–Simons matrix
model on M = S3 is known to be deeply connected to exactly solvable
models of statistical mechanics and certain stochastic processes. For exam-
ple, it is related to the N -particle Sutherland model [34]. Moreover, in [35]
it was pointed out that the matrix model expression for the Chern–Simons
partition function on S3 is just the extensivity property of probabilities in
the Brownian motion of N independent particles. A special instance of this
latter connection can also be noted directly by using the observation of [26]
that the Lawrence–Rozansky localization formula for SU(2) Chern–Simons
theory on S3 amounts to rewriting the matrix model expression as

Z2
CS

(
S3
)

=

√
2

k + 2
sin
( π

k + 2

)
=

e− iπ/(k+2)

2π i

∞∫
−∞

dx sinh2
(

1
2 e

iπ/4 x
)
e−

k+2
8π

x2
.

This is a first moment of the functional exponential of Brownian motion At
given by

E [(At)n] =
∫
R

dx (sinhx)2n e−x
2/2t

√
2π t

,

where At =
∫ t

0 ds e
2Bs with B = {Bt | t > 0} a one-dimensional Brownian

motion [36].
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More intrinsically, there is a fundamental well-known connection be-
tween random plane partitions and non-intersecting lattice paths via the
Lindstrom–Gessel–Viennot formalism [37]. The specialization of the Schur
polynomial sλ(1, q, . . . , qN−1) can be expressed as a random matrix aver-
age in the Stieltjes–Wigert ensemble [38] whose joint probability density
has an interpretation as a Brownian motion. This follows from the Karlin–
McGregor determinant formula for the probability measure of N particles,
at initial positions λ = (λ1, λ2, . . . ), to undergo independent Brownian mo-
tion without collision to an equispaced final position at time t [39]. By using
the Littlewood formula [18],

∑
λ

sλ(x1, . . . , xN ) =
N∏
i=1

1
1− xi

∏
i<j

1
1− xi xj

,

we can write the melting crystal partition function as a product of non-
intersecting Brownian path distributions

ZC3 =

(∑
λ

sλ

(
1, q, q2, . . .

))(∑
λ

sλ

(
− 1,−q,−q2, . . .

))
,

with q = e1/t = e−gs .

3. Quantization of toric geometry

In this section we will relate the crystal melting model to the quanti-
zation of spacetime geometry. We first demonstrate how such quantization
can be induced through quantum gravitational fluctuations in a certain toy
model of quantum gravity. Later on we will see that this crystalline struc-
ture can be understood dynamically in terms of instantons of a topological
gauge theory in six dimensions, extending the gauge theory description of
the previous section, that we also describe below. We then describe the
general construction of the quantum geometry, following [40].

3.1. Kähler quantum gravity

The toy model of quantum gravity that we present was studied in the
early 1990s and applies to any Kähler manifold in six dimensions; here we
follow the presentation of [11] (see also [41]). Let X be a complex manifold
of dimension dimC(X) = 3, with fixed nondegenerate Kähler (1, 1)-form ω0

satisfying dω0 = 0. In the following, we will usually assume that X is a toric
Calabi–Yau threefold.
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Given this data one can write down the gravitational path integral

ZX =
∑

[ω]=[ω0]

e−S with S =
1
g2
s

∫
X

1
3!
ω ∧ ω ∧ ω .

This integral is discrete; it is given by a sum over “quantized” Kähler forms ω,
which means that they have the same periods as the form ω0. This is tanta-
mount to a summation over the Picard lattice H2(X,Z) of degree two coho-
mology classes of X, which consists of characteristic (isomorphism) classes
of line bundles over X. Thus we decompose the “macroscopic” form ω into
fluctuations around the “background” form ω0, given by the curvature FA of
a holomorphic line bundle L → X, as ω = ω0 + gs FA with the fluctuation
condition

∫
β FA = 0 for all two-cycles β ∈ H2(X,Z).

By direct substitution using the fluctuation condition, this gives the
action

S =
1
g2
s

1
3!

∫
X

ω3
0 +

1
2

∫
X

FA ∧ FA ∧ ω0 + gs

∫
X

1
3!
FA ∧ FA ∧ FA .

By dropping the irrelevant constant term, the statistical sum thus becomes

ZX =
∑

[L→X]

qch3(L)

b2(X)∏
i=1

(
Qi
)R
Ci

ch2(L)
,

where q = e−gs , Qi = e
−

R
Si
ω0 , Si ∈ H2(X,Z) and Ci ∈ H4(X,Z) are dual

bases of two-cycles and four-cycles, and b2(X) is the second Betti number
of X. This partition function is of precisely the same form as the crys-
tal partition function in the case that X is toric; indeed the second Chern
characteristic classes ch2(L) of line bundles can be naturally associated to
Young tableaux, while the third Chern characteristic classes ch3(L) natu-
rally correspond to three-dimensional Young diagrams. However, the prob-
lem with this model as it is currently formulated is that the fluctuation
condition on FA implies that all line bundles L occurring in the sum are
trivial, ch2(L) = ch3(L) = 0, and hence this model of Kähler quantum
gravity is not well-defined.

It is the resolution to this problem that leads to the quantization of geom-
etry. Instead of considering smooth connections as is the usual practice, one
should take FA to correspond to a singular U(1) gauge field A on X. This
procedure is well understood in algebraic geometry. It means that we should
enlarge the range of the sum over line bundles to include also contributions
from ideal sheaves, which fail to be holomorphic line bundles on a finite set
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of points, identified as the singular locus of the gauge fields. We will see later
on that this extension is provided by considering the instanton solutions of
gauge theory on a noncommutative deformation C3

θ of affine space, which are
described in terms of ideals I in the polynomial algebra C[z1, z2, z3]. They
correspond locally to crystalline configurations on each patch of the mani-
fold X. In [11] this phenomenon is interpreted as a gravitational quantum
foam. The gauge field configurations become non-singular on the blow-up
X̂ → X obtained by replacing the singular points with non-contractible cy-
cles, and ideal sheaves on X lift to line bundles on the resolution X̂; this
alters the homology of X and is interpreted as a spacetime topology change.
In this way the molten crystal gives a discretization of the geometry of X
at the Planck scale; each atom of the crystal is a fundamental unit of the
quantum geometry.

3.2. Six-dimensional cohomological gauge theory

A direct gauge theory realization of this construction can be given
[11, 42], wherein one can naturally see the necessity for enlarging the space
of gauge connections. The natural gauge theory on a D6-brane in Type IIA
superstring theory is a topological twist of the maximally supersymmet-
ric Yang–Mills theory in six dimensions; the twisting carries us away from
the usual physical gauge theory and is necessary to ensure supersymme-
try when X is curved. It can be obtained through dimensional reduction of
ten-dimensional supersymmetric Yang–Mills theory over X, and the bosonic
part of its action reads

Sbos = 1
2

∫
X

(
dAΦ ∧ ∗dAΦ+

∥∥∥F 2,0
A

∥∥∥2
+
∥∥∥F 1,1

A

∥∥∥2
)

+ 1
2

∫
X

(
FA ∧ FA ∧ ω0 +

gs
3
FA ∧ FA ∧ FA

)
,

where Φ is a Higgs field and FA = F 2,0
A + F 1,1

A + F 0,2
A is the holomorphic–

antiholomorphic decomposition of the curvature two-form with respect to
a chosen complex structure on X. The second line of this action coincides
with that of the decomposed Kähler gravity action.

Considering the fermionic terms, the gauge theory has a large BRST
symmetry, and its functional integrals (observables) localize at BRST fixed
points which are given by the equations

F 2,0
A = 0 = F 0,2

A and F 1,1
A ∧ ω0 ∧ ω0 = 0 . (3.1)
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These are the Donaldson–Uhlenbeck–Yau equations which describe the ab-
solute minima of the gauge theory action; the first equation says that the
pertinent gauge bundle is holomorphic, while the second equation is an in-
tegrability condition on the gauge connection. Their solutions are thus BPS
solutions which we interpret as (generalized) instantons. In string theory
they describe BPS bound states of D6–D2–D0 branes on X (in a particular
chamber of the Kähler moduli space).

According to the general principles of cohomological gauge theory, the
partition function can be computed from the localization formula onto the
instanton moduli space M given by ZX =

∫
M e(N ), where e(N ) denotes

the Euler characteristic class of the antighost bundle N over M defined by
integration over the zero modes of the antighost fields in the gauge fixed path
integral. This expression is very symbolic, because the instanton moduli
space is neither smooth nor even a variety. It can be made sense of using
obstruction theory techniques from algebraic geometry; see [41] for a concise
discussion of this point. Later on we will describe a variant of this moduli
space for the four-dimensional analog of this gauge theory.

We can nevertheless formally use this Euler character formula to describe
the instanton contributions to the partition function, provided we resolve
at least some of the singularities of the instanton moduli space. First of
all, we must deal with the non-compactness of M. For X = C3, we can
regularize the infrared singularities of M by putting the gauge theory in
the supergravity “Ω-background” introduced by Nekrasov [6]. This deforms
the gauge theory such that the moduli space integrals can be evaluated
explicitly using equivariant localization formulas with respect to the lift of
the natural toric action on X to M; the torus fixed points on M are just
the instanton gauge fields. Since ch2(L) = 0 when X has no non-trivial
two-cycles, this saturates ZX by pointlike instantons in this case. We must
also resolve the small instanton ultraviolet singularities of M; this is achieved
by replacing X = C3 ∼= R6 by its noncommutative deformation R6

θ, defined
by replacing the coordinates xi of R6 with Hermitian operators obeying
Heisenberg commutation relations[

xi , xj
]

= i θij , (3.2)

with a constant, real-valued, non-degenerate antisymmetric deformation ma-
trix (θij). Thus the pertinent compactification of the instanton moduli space
needed to make gauge theory quantities well-defined also naturally leads to
a quantization of the target space geometry; this compactification is known
to correspond to adding ideal sheaves to M.
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3.3. Cocycle twist quantization

In the remainder of this section we spell out the details of the construc-
tion of the quantum geometry. We use the deformation procedure of [43]
which is tailored to deal with instances wherein there is a symmetry group
acting on a class of objects that one wishes to quantize; in our case this will
be the induced action of the torus group T on the algebra of functions on a
toric variety. However, we spell out the construction in a very general way
that can be exploited in a variety of other contexts.

Let H be a commutative Hopf algebra over C (representing the “sym-
metries” under consideration) endowed with a linear convolution-invertible
unital two-cocycle F : H⊗H → C. Such a cocycle is called a “twist”. Below
we use Sweedler notation for the coproduct ∆ : H → H ⊗H of H, ∆(h) =
h(1)⊗h(2), and also (∆⊗ idH)◦∆(h) = h(1)⊗h(2)⊗h(3) = (idH⊗∆)◦∆(h),
with implicit summations over the factors.

Given this data, we can define a new “twisted” Hopf algebra HF with the
same coalgebra structure as H, but whose algebra product is modified to

h×F g := F
(
h(1), g(1)

) (
h(2) g(2)

)
F−1

(
h(3), g(3)

)
. (3.3)

The cocycle condition ensures that this product is associative. A com-
plex vector space A is a left H-comodule if it carries a compatible left
coaction ∆L : A → H ⊗ A of H on A; we use the Sweedler notation
∆L(a) := a(−1) ⊗ a(0) for a ∈ A, again with implicit summation. The
category whose objects are left H-comodules and whose morphisms are left
H-coequivariant homomorphisms is denoted HM. Since H and HF are
the same as coalgebras, every left H-comodule is a left HF -comodule and
every H-coequivariant homomorphism is an HF -coequivariant homomor-
phism. This implies that there is a functorial isomorphism of categories
of left comodules QF : HM → HFM, which simultaneously deforms any
H-covariant construction into an HF -covariant one. It is this technique of
“functorial quantization” that is extremely powerful and general enough to
fulfill all our needs.

As we have written it down thus far, this categorical equivalence is trivial,
because the functor QF acts as the identity on objects and morphisms of
the category HM. However, the category HM has more structure, and the
isomorphism QF acts non-trivially on this extra structure, which is that
of a braided monoidal category. The monoidal structure is provided by
the ordinary tensor product of H-comodules, while the braiding morphism
Ψ : A ⊗ B → B ⊗ A on HM is given by the trivial “flip” morphism which
interchanges factors in a tensor product, i.e. Ψ(a ⊗ b) = b ⊗ a. Writing
AF = QF (A) for A ∈ HM, we can twist the flip morphims into a new
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braiding ΨF : AF ⊗BF → BF ⊗AF on HFM given by

ΨF (a⊗ b) = F−2
(
b(−1), a(−1)

) (
b(0) ⊗ a(0)

)
.

There is also a twisting of the monoidal structure, but we do not write it
here.

Our main interest is the comodule twisting of algebras. An algebra
A ∈ HM is a left H-comodule algebra if its product map A ⊗ A → A
is an H-coequivariant homomorphism. The quantization functor QF then
generates a left HF -comodule algebra AF which as a vector space is the
same as A but with the new product

a · b := F
(
a(−1) , b(−1)

) (
a(0) b(0)

)
. (3.4)

If A,B are comodule algebras in HFM, then so is their braided tensor prod-
uct A⊗B, which is defined to be the vector space A⊗B endowed with the
product defined on primitive elements by

(a⊗ b) · (c⊗ d) = aΨF (b⊗ c) d .

For the trivial flip braiding, this definition coincides with the natural product
induced on A⊗B.

3.4. Noncommutative toric varieties

We now apply this functorial deformation procedure to define the quan-
tization of toric varieties X → Xθ [40]. First, we define the noncommutative
algebraic torus Tθ = (C×θ )d using a twisting cocycle. The algebra dual to
the torus T is the Laurent polynomial algebra H := C(t1, . . . , td) = A(T )
which is generated by monomials tp := tp11 · · · t

pd
d with p ∈ Zd. Since T is

an Abelian Lie group, H has the standard structure of a commutative Hopf
algebra with coproduct, counit, and antipode given respectively on mono-
mials by ∆(tp) = tp ⊗ tp, ε(tp) = 1 and S(tp) = t−p, with ∆, ε extended as
algebra morphisms and S extended as an anti-algebra morphism. The sim-
plest choice of twisting cocycle F : H ⊗H → C is provided by the Abelian
twist defined on generators by

F (ti, tj) = exp
(

i
2 θij

)
=: qij

involving complex parameters θij = −θji ∈ C, and extended as a Hopf
bicharacter. Since T is Abelian, one then easily checks that the twist factors
cancel out in the product (3.3), and hence H = HF as Hopf algebras.
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Nevertheless, this cocycle still induces a non-trivial twisting of the cate-
gory ofH-comodules. For example, the coproduct∆ : H → H⊗H makes the
Hopf algebra H itself into a comodule algebra in HM, and so the cotwisted
torus has product (3.4) satisfying the relations

ti · tj = F (ti, tj) ti tj = F 2(ti, tj) tj · ti = q2
ij tj · ti .

This defines the noncommutative torus A(Tθ) as an algebra object of the
twisted category HFM.

We can thus quantize any quantity on which the original torus T acts.
Let X be a toric variety with fan Σ consisting of a set of cones σ. We
first define noncommutative affine toric varieties σ 7→ A

(
Uθ[σ]

)
as finitely-

generated HF -comodule subalgebras of A(Tθ). For example, the noncommu-
tative affine d-plane is the variety dual to the polynomial algebra A(Cd

θ) =
Cθ[t1, . . . , td] with the relations ti tj = q2

ij tj ti. This noncommutative variety
is called the “algebraic Moyal plane”. It can be realized in fashion similar to
the more conventional Heisenberg commutation relations (3.2) via the map
ti 7→ zi = log ti with [zi, zj ] = i θij . In general, the “patches” of the quantum
toric variety Xθ are given by a quotient of the algebra A(Cd

θ) by an ideal
of relations. The gluing rules of toric geometry now translate into algebra
automorphisms between affine patches A

(
Uθ[σ]

)
in the category HFM. This

quantization thus uses the same combinatorial data as in the commutative
case, i.e. the same fan Σ, and just deforms the coordinate algebra of each
cone σ ∈ Σ. See [40] for further details of the explicit construction.

4. Crystal melting in two dimensions

In this section, we describe the melting crystal model in two dimensions,
following [44]. The natural gauge theory counterpart in this instance is
the maximally supersymmetric Yang–Mills theory in four dimensions. We
discuss to what extent the analogs of all correspondences for the three-
dimensional crystal hold in this case; the proper understanding of these
relationships would sharpen the picture of a dynamically induced quantum
geometry of four-dimensional spacetime. In this regard, the toric geometry
of six-dimensional spaces (hence those which naturally arise in string theory
compactifications) is singled out as special.

4.1. Statistical mechanics and random partitions

The statistical mechanics of crystal melting in two dimensions is a com-
binatorial problem describing the growth of ordinary random partitions
(Young tableaux). Analogously to the three-dimensional case, the infinite
partitions label T -invariant open sets U ⊂ X of a smooth quasi-projective
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toric surfaceX with asymptotics specified by single integers along each of the
two coordinate directions. A typical configuration is depicted in Fig. 4. In
contrast to the three-dimensional case, the vertex formalism for the counting
problem greatly simplifies due to the explicit factorization of infinite Young
diagrams into finite Young diagrams, as is evident from Fig. 4. We denote
this factorization symbolically as

{∞ Young tableau} ←→ Z2
≥0 × {finite Young tableau} . (4.1)

Geometrically this corresponds to the factorization of the Hilbert scheme
of curves on X into a reduced divisorial part (containing effective divisors)
and a zero-dimensional punctual part (containing free embedded points);
all Young diagrams (other than hook diagrams) correspond to closed sub-
schemes of X with embedded points.

Fig. 4. Melting crystal corner in two dimensions. The index i labels one-cones of
the fan Σ of a toric surface X, with the index pair labelling the two bounding
one-cones of each torus invariant fixed point on X.

The quantum version of the melting crystal corner in two dimensions
is also integrable; it can be mapped exactly to the Heisenberg XXZ ferro-
magnetic spin chain [45]. The classical lattice statistical mechanics on a
decorated finite bivalent planar graph Γ is described by the partition func-
tion

Zcrystal(X) =
∑
λe

∏
edges e

Gλe(q,Qe)
∏

vertices
v=(e1,e2)

Vλe1 ,λe2 (q) , (4.2)

where the vertex factors are

Vλe1 ,λe2 (q) = η̂(q)−1 q−λe1 λe2

while the edge factors are given by

Gλe(q,Qe) = qae
λe (λe−1)

2
+λe Qλee
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with ae ∈ Z. The sum runs over λe ∈ Z≥0 for all internal edges e of Γ , while
λe = 0 on external legs. The function η̂(q) is proportional to the Dedekind
function η(q); its inverse is the Euler function

η̂(q)−1 =
∞∏
n=1

1
1− qn

=
∞∑
k=0

p(k) qk ,

where p(k) is the number of partitions λ = (λ1, λ2, . . . ) of degree |λ| =∑
i λi = k. The graph Γ is the dual web diagram to the toric fan Σ of a

surface X. The integers ae are the intersection numbers between neighbour-
ing two-cones of Σ. The appearance of the Euler function in this expression
agrees with the general expectations of Göttsche’s formula∑

k≥0

χ
(
X [k]

)
qk = η̂(q)−χ(X) ,

whereX [k] denotes the Hilbert scheme of k points onX. The six-dimensional
version of this formula involving the MacMahon function and the motivic
Hilbert scheme of points was given recently in [46]. It is natural to ask at this
stage if there exists a four-dimensional version of “topological string theory”
that reproduces this counting; this point is currently under investigation.

4.2. N = 4 supersymmetric Yang–Mills theory in four dimensions

The relevant four-dimensional supersymmetric gauge theory is again not
the physical one that appears in standard contexts such as the AdS/CFT
correspondence, but rather the N = 4 Vafa–Witten topologically twisted
U(1) Yang–Mills theory [47] on Kähler four-manifold X, coupled with in-
stanton and monopole charges

k =
1

8π2

∫
X

FA ∧ FA and ui =
1

2π

∫
Si

FA

for i = 1, . . . , b2(X). The topologically twisted gauge theory coincides with
the physical one in the case that X is a hyper-Kähler manifold. Under
the conditions required by the Vafa–Witten vanishing theorems, the path
integral localizes onto the instanton moduli space and has an expansion

Zgauge(X) =
∑
k≥0

∑
u∈H2(X,Z)

Ω(k, u) qk
b2(X)∏
i=1

Quii , (4.3)
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where Ω(k, u) is the Witten index which computes the Euler character of
the moduli space of U(1) instantons on X (obeying the anti-self-duality
equations in Eq. (1.1)) with the given charges; this degeneracy factor also
counts the number of BPS bound states of D4–D2–D0 branes on X (in a
particular chamber of the Kähler moduli space).

The partition function (4.3) has a conjectural exact expression in the
case of Hirzebruch–Jung spaces X [48,29], which are Calabi–Yau resolutions
of toric orbifold singularities in four dimensions. The difficulty in making
these calculations rigorous is that one needs to consider torsion-free sheaves
on a “stacky compactification” of X; this variety should be a toric Deligne–
Mumford stack whose coarse space is X [49]. Beyond the specific examples
of ALE spaces, a rigorous construction of moduli spaces of framed sheaves
on these stacks is currently unknown. See [41] for further analysis of these
moduli spaces.

The decomposition (4.1) has a gauge theory analog — it represents the
factorization of the moduli space of rank one torsion free sheaves on X
into a product of the Picard lattice of line bundles (generated by torically
invariant divisors) with the Hilbert schemes of points (ideal sheaves) on X.
Embedding the space of bundles with anti-self-dual gauge connections into
the space of semi-stable torsion free sheaves gives a well-defined smooth
compactification of the instanton moduli space, which is naturally identified
with a space of noncommutative instantons, as described in the next section.
However, in contrast to our previous models, here the melting crystal and
gauge theory problems are not identical in four dimensions; the relation
between the two enumerative problems is described in [44]. This can be
immediately seen in the example of ALE spaces, which are resolutions of An
singularities C2/Zn+1. The toric geometry for n = 2 is depicted in Fig. 5.

Fig. 5. Toric diagram for the A2 ALE space, and its dual fan.

For n = 1 the combinatorial rules (4.2) give the melting crystal partition
function

Zcrystal(A1) =
1

η̂(q)2

∞∑
λ=0

qλ
2
Qλ ,
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whereas the gauge theory instanton expansion is given by

Zgauge(A1) =
1

η̂(q)2

∞∑
u=−∞

q−
1
4
u2
Qu .

5. Noncommutative instantons

In this final section, we explain some details of the constructions of non-
commutative instantons and their moduli spaces, which played a prominent
role in the previous sections. We first describe the instanton contributions to
the six-dimensional cohomological gauge theory, and demonstrate that they
correctly reproduce the melting crystal model in three dimensions. Then
we analyse the instanton moduli space in four dimensions, where an explicit
construction is possible [50].

5.1. Noncommutative gauge theory

Using the enveloping algebra of the Heisenberg algebra (3.2), we re-
gard all fields as operators on a separable Hilbert space and turn the six-
dimensional cohomological gauge theory into a noncommutative gauge the-
ory following the standard prescription (see e.g. [51]). For this, we repre-
sent the complex combinations za = x2a−1 − ix2a and z̄ā = x2a−1 + ix2a

for a = 1, 2, 3 as destruction and creation operators on a three-particle Fock
space in the number basis

H = C
[
z̄1̄ , z̄2̄ , z̄3̄

]
|0, 0, 0〉 =

∞⊕
i,j,l=0

C|i, j, l〉 . (5.1)

Introduce the covariant coordinates

Xi = xi + i θij Aj and Za = 1√
2

(
X2a−1 + iX2a

)
.

Using the Heisenberg algebra (3.2) we can represent derivative operators as
inner derivations on the noncommutative algebra of fields; then the covari-
ant coordinates transform homogeneously under gauge transformations. In
particular, the field strength tensor of the gauge potential becomes a com-
mutator of covariant coordinates, and the instanton equations in Eqs. (3.1)
become [

Za , Zb
]

= 0 and
[
Za , Z̄ā

]
= 3 . (5.2)

This is the primary technical advantage of the noncommutative deformation
— it turns the first order partial differential equations (3.1) into algebraic
equations.
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Up to gauge equivalence, the vacuum state FA = 0 is given by harmonic
oscillator algebra Za = za. Non-vacuum solutions of (5.2) give fluctuations
Ai 6= 0 around the noncommutative spacetime and hence noncommutative
instantons. The standard prescription for obtaining the general solution
starting from the vacuum field configuration is to fix n ≥ 1, and let Un be a
partial isometry on H projecting out all states |i, j, l〉 with particle number
i+ j + l < n. We then make the ansatz Za = Un za f(N)U †n. The function
f(N) of the number operator N = z̄ā za is found by substituting this ansatz
into the instanton Eqs. (5.2) to generate a quadratic recursion relation for it,
which has a unique solution once initial conditions are specified; the explicit
form of f(N) can be found in [42]. The resulting instanton has topological
charge

k = − i
6 TrH(FA ∧ FA ∧ FA) = 1

6 n (n+ 1) (n+ 2)

equal to the number of states in H with N < n, i.e. that are removed by Un.
To identify the instanton contributions to the gauge theory partition

function, we note that Un identifies the full Fock space (5.1) with the sub-
space

HI =
⊕
f∈I

f (z̄1̄ , z̄2̄ , z̄3̄) |0, 0, 0〉 ,

where I = C
〈
wi1w

j
2w

l
3

∣∣ i + j + l ≥ n
〉
is a monomial ideal of codimension

k in the polynomial algebra C[w1, w2, w3]; it defines a plane partition

π =
{

(i, j, l)
∣∣ i, j, l ≥ 1 , wi−1

1 wj−1
2 wl−1

3 /∈ I
}

with |π| = k boxes. Up to perturbative contributions from the empty Young
diagram π = ∅, the noncommutative instanton contributions thus reproduce
the expected MacMahon function ZC3 = M(q) with q = e−gs . For a generic
toric Calabi–Yau threefold X, the corresponding field configurations are in-
stantons sitting on top of each other at the origin of C3, with asymptotes
to four-dimensional instantons along the three coordinate axes. Patching
these local contributions together then yields the three-dimensional crystal
partition function ZX ; see [11,42] for details.

A completely analogous construction works for noncommutative instan-
tons in four dimensions. They sit at the origin in C2 and now correspond to
ordinary Young tableaux, with asymptotes along the two coordinate axes to
magnetic monopoles in two dimensions. The associated picture of gravita-
tional quantum foam is elucidated in detail in [52]. However, as mentioned
before, in this case the instanton contributions fail to reproduce the two-
dimensional crystal partition function.
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5.2. Instanton moduli spaces

For the remainder of this paper we restrict to the four-dimensional case
and examine the problem of constructing explicitly both the instanton mod-
uli spaces, and the associated instanton gauge connections. For this, we
compactify the affine space C2 to the complex projective space P2. The
crystal partition function in this case is [44]

Zcrystal

(
P2
)

=
1

η̂(q)3

∑
λ1,λ2,λ3∈Z≥0

q
1
2

(λ1+λ2+λ3)2+ 3
2

(λ1+λ2+λ3)Qλ1+λ2+λ3

while the instanton partition function is given by

Zgauge

(
P2
)

=
1

η̂(q)3

∑
u∈Z

q−
1
2
u2
Qu .

We will now construct the noncommutative projective plane P2
θ [40].

For each maximal cone σi we first construct the left HF -comodule algebras
A
(
Uθ[σi]

)
dual to affine varieties which are each a copy of the noncommu-

tative affine plane, i.e. Uθ[σi] ∼= C2
θ for i = 1, 2, 3. The edges yield affine

spaces Uθ[σi ∩ σi+1] which are each a copy of the noncommutative projec-
tive line P1

θ dual to the polynomial algebra in two generators w1, w2 with
relations

w1w2 = q2 w2w1 and w1w
−1
2 = q−2 w−1

2 w1 ,

where q := q12. The gluing morphisms can be summarized in the diagram

which describes the noncommutative toric geometry of the projective plane.
The Laurent algebra here is dual to the cone point of P2

θ, the polynomial
algebras in two variables represent the torus invariant open “patches”, while
the polynomial algebras in three generators correspond to the divisors joining
patches.
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To be able to proceed further, we need a more global notion of a noncom-
mutative toric variety provided by some analog of a homogeneous coordinate
algebra. In general, this is difficult to define in a manner which is compatible
with the combinatorial fan construction. However, an explicit construction
is possible for noncommutative projective spaces, and hence for noncommu-
tative projective toric varieties [40]; the resulting homogeneous coordinate
algebras are equivalent to those defined in [53].

For the noncommutative projective plane, this is the polynomial algebra
A = Cθ[w1, w2, w3] in three generators with the relations

w1w2 = q2 w2w1 and wiw3 = w3wi (5.3)

for i = 1, 2; the particular choice of w3 as central element is immaterial [40].
It is graded by polynomial degree and hence A defines a graded algebra
object of the category HFM; this grading is crucial for the ensuing con-
structions. Each element wi for i = 1, 2, 3 generates a left denominator
set in A, and there is a natural algebra isomorphism between the degree 0
left Ore localization A[w−1

i ]0 of the algebra A at each generator and the
algebra A

(
Uθ[σi]

)
; hence this gives an equivalent description of the noncom-

mutative projective plane P2
θ defined above. The graded algebra surjection

A → A∞ := A/A · w3 defines a noncommutative line P1
θ ↪→ P2

θ “at infinity”;
it is described by setting w3 = 0 in the relations (5.3).

We use the standard correspondences of noncommutative algebraic ge-
ometry. Finitely-generated graded right A-modules M correspond to “co-
herent sheaves” on P2

θ. If such a module M is projective then it is thought
of as a “bundle”. If M is torsion-free, i.e. it contains no finite-dimensional
submodules, then M embeds in a bundle. These identifications are possible
and lead to well-defined constructions because the homogeneous coordinate
algebras A have nice “smoothness” properties — they are Artin–Schelter
regular algebras of global homological dimension 3 [40, 53].

We are finally ready to construct the instanton moduli spaces Mθ(r, k),
following [50]. For this, we note that any A-module M naturally induces
an A∞-module M∞ = M/M · w3. We say that M is a framed module if
M∞ can be trivialized, i.e. it is isomorphic to a free A∞-module. There is a
natural notion of isomorphism for framed modules. We define Mθ(r, k) to be
the set of isomorphism classes of framed torsion-free A-modules with fixed
trivialization M∞ ∼= (A∞)⊕r and with dimC Ext1(A,M(−1)) = k, where
M(−1) denotes the graded A-module M with its degrees shifted by −1.

Torsion-free graded A-modules generally have natural invariants associ-
ated to them. The rank of M is the maximum number of non-zero direct
summands of M ; for M ∈ Mθ(r, k) one has rank(M) = r. Furthermore, the
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sum
χ(M) =

∑
p≥0

(−1)p dimC Extp(A,M)

in this case is well-defined and is called the Euler characteristic of M ; one
can show that χ(M) = r − k for M ∈ Mθ(r, k). There is also a notion of
first Chern class c1(M) [50], but we do not need this here since c1(M) = 0
for framed modules. However, at this purely algebraic level there is no
notion of second Chern class, hence we use the Euler characteristic instead
to characterize the “instanton number” k.

5.3. Noncommutative ADHM construction

We shall now give an equivalent characterization of the instanton moduli
space Mθ(r, k) in terms of linear algebraic data. Introduce matrices B1, B2 ∈
Matk×k(C), I ∈ Matk×r(C) and J ∈ Matr×k(C) satisfying the following two
conditions:

• The noncommutative complex ADHM equation

[B1, B2]θ + I J = 0 ,

where
[B1, B2]θ := B1B2 − q−2 B2B1

is the braided commutator which is naturally induced by the twist
quantization functor.

• The stability condition: There are no non-trivial invariant subspaces
0 6= V ( Ck with Bi(V ) ⊂ V and im(I) ⊂ V .

Then there is a bijection between the instanton moduli space Mθ(r, k)
and the set of matrices {B1, B2, I, J} obeying these two conditions modulo
the natural action of the gauge group GL(k,C) given by

Bi 7−→ g Bi g
−1 , I 7−→ g I and J 7−→ J g−1 (5.4)

for g ∈ GL(k,C). The stability condition ensures that this group action is
free and proper, hence the quotient is well-defined in the sense of geometric
invariant theory. This theorem is proven analogously to the commutative
case by constructing natural spaces of deformed monads in the category
HFM on both sides of the correspondence and proving that they are in a
one-to-one correspondence. Details can be found in [50]; there it is also
described to what extent this bijection is an isomorphism of schemes by
considering the moduli spaces as occurring in families.



488 R.J. Szabo

5.4. Noncommutative twistor transform

We will close by briefly discussing to what extent the isomorphism classes
in the instanton moduli space Mθ(r, k) can be regarded as noncommutative
gauge connections obeying some form of anti-self-duality equations. This
can be achieved by constructing a noncommutative version of the twistor
correspondence for instantons. We begin by defining the noncommutative
Klein quadric Grθ(2; 4) ↪→ P5

Θ which is a special instance of the construction
of noncommutative Grassmann varieties given in [40]. Consider the exterior
algebra

∧2 C4 of a four-dimensional vector space which is a left H-comodule.
It can be naturally regarded as a left H-comodule algebra, and accordingly
the braided exterior algebra

∧2
θ C4 can be regarded as an object in the

category HFM, defined in the usual way by cocycle twist quantization. It is
spanned by minors ΛJ labelled by 2-indices J = (j1 j2) with 1 ≤ j1, j2 ≤ 4
and satisfying the relations

ΛJ ΛK = q2
j1k1 q

2
j1k2 q

2
j2k1 q

2
j2k2 Λ

K ΛJ .

There are two constraints that must be satisfied. Firstly, to ensure
existence of the embedding Grθ(2; 4) ↪→ P5

Θ
∼= P(

∧2
θ C4) we must regard

these minors as homogeneous coordinates on the noncommutative projective
space, which imposes the consistency condition on the deformation param-
eters

ΘJK = θj1k1 + θj1k2 + θj2k1 + θj2k2

and hence restricts the allowed ambient varieties P5
Θ (contrary to the com-

mutative case). Secondly, we must restrict the homogeneous coordinates ΛJ
of the projective space to the embedding Grθ(2; 4). This constraint is im-
posed via noncommutative Laplace expansions of the minors, and in this case
leaves only one non-trivial relation, the quadratic noncommutative Plücker
relation [40, 50]

Λ(12) Λ(34) − q13 q21 q
2
23 q24 Λ

(13) Λ(24) + q14 q21 q23 q
2
24 q34 Λ

(14) Λ(23) = 0 .

From this noncommutative Grassmannian we can construct a noncom-
mutative sphere S4

θ . For this, we restrict the deformation parameters to
q12 = q−1

21 =: q ∈ R and qij = 1 otherwise. We then define A(S4
θ ) to be the

R-algebra generated by the ∗-involution on A(Grθ(2; 4)) given by

Λ(13) † = q Λ(24) and Λ(14) † = −q−1 Λ(23) ,

Λ(12) † = Λ(12) and Λ(34) † = Λ(34) .
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We can describe this sphere patchwise on its northern and southern hemi-
spheres. For example, it contains a copy of the noncommutative Euclidean
four-space defined as the open affine subvariety R4

θ ⊂ S4
θ given by the de-

gree 0 right Ore localization A(Grθ(2; 4))[Λ(34) −1]0. This algebra is isomor-
phic to the polynomial algebra C[ξ1, ξ̄1, ξ2, ξ̄2] with generators obeying the
relations

ξ1 ξ̄1 = q2 ξ̄1 ξ1 and ξ2 ξ̄2 = q−2 ξ̄2 ξ2 ,

ξ1 ξ2 = q2 ξ2 ξ1 and ξ̄1 ξ̄2 = q−2 ξ̄2 ξ̄1 ,

ξ1 ξ̄2 = ξ̄2 ξ1 and ξ2 ξ̄1 = ξ̄1 ξ2 ,

ξ†1 = q−1 ξ̄1 and ξ†2 = −q−1 ξ̄2 .

This noncommutative four-sphere seems to be new; in particular, it is dis-
tinct from the Connes–Landi spheres which come from isospectral defor-
mations [54] or the quantum spheres which arise as quantum homogeneous
spaces associated to quantum groups [55]. The Connes–Landi spheres are
uniquely singled out by their cohomology, but this does not apply to complex
deformations like ours. It would be interesting to understand these spheres
in further detail, by e.g. studying their cyclic cohomology and how they are
singled out as real slices inside the noncommutative Grassmannians.

The noncommutative twistor transform is constructed by means of the
twistor correspondence

(5.5)

where the algebra A(P3
θ) of the projective three-space is the “noncommu-

tative twistor algebra”, and Flθ(1, 2; 4) is the noncommutative partial flag
variety which is most conveniently described via the braided tensor prod-
uct [40]

A
(
P3
θ

)
⊗A

(
Grθ(2; 4)

)
−→ A

(
Flθ(1, 2; 4)

)
.

We will construct instantons on S4
θ by using the twistor transform which is

the morphism from A(P3
θ)-modules to A(Grθ(2; 4))-modules given by

M 7−→ p2
∗ p1∗(M) with p1∗(M) =

[
M ⊗A(P3

θ) A
(
Flθ(1, 2; 4)

)]
diag

,

where the definition of pushforward along the correspondence diagram (5.5)
is explained in [15].
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The final ingredient required for the construction of noncommutative
instantons is the notion of self-conjugate instanton modules. There is a
natural quaternion structure on the homogeneous coordinate algebra A(P3

θ)
given by J (w1, w2, w3, w4) = (w2,−w1, w4,−w3), which induces a functor
M 7→ M † := J •(M)∨ on the category of A(P3

θ)-modules. On the non-
commutative ADHM data it acts as (B1, B2, I, J) 7→ (−B†2, B

†
1,−J†, I†). In

addition to the conditions spelled out before, let us further subject these
matrices to the noncommutative real ADHM equation[

B1, B
†
1

]
θ

+ q−2
[
B2, B

†
2

]
−θ

+ I I† − J† J = 0 .

Then there is a bijection between the set of such matrices modulo the re-
striction of the gauge symmetry (5.4) to the unitary subgroup U(k), and the
space of torsion-free self-conjugate modulesM on A(P3

θ), i.e.M ∼= M †, with
fixed framingM∞ ∼= (A∞)⊕r and Ext1(A(P3

θ),M(−2)) = 0. This correspon-
dence is again established using noncommutative monad techniques [50].

The restriction of this bijection to the subvariety P2
θ gives the desired

construction of anti-self-dual connections on a canonical “instanton bundle”.
For this, we apply the twistor transform to a self-conjugate A(P3

θ)-moduleM ,
which gives a module over A(Grθ(2; 4)). Restricting to the real subvariety
R4
θ then gives the right A(R4

θ)-module

N = kerD with D =
(
B1 − q−1 ξ1 B2 − q ξ2 I

−B†2 − q−1 ξ̄2 B†1 − q ξ̄1 −J†

)
which follows by restriction of the derived functor of the twistor transform to
A(R4

θ). By the stability condition, the map D is a surjective morphism of free
A(R4

θ)-modules such that ∆ = DD† is an isomorphism, and the module N is
finitely-generated and projective of rank r with projector P = 1−D†∆−1D,
i.e. P 2 = P = P †.

Using the canonically defined differential structure Ω•(R4
θ) obtained by

deforming the classical calculus Ω•(R4) as a left H-comodule algebra using
the twisting cocycle F , we obtain the instanton connection ∇ := P ◦ d
in the usual sense of noncommutative differential geometry, with curvature
FA = ∇2 = P (dP )2. The difficulty at this stage is determining what is
the anti-self-duality equation that this curvature should satisfy. In the case
of isospectral deformations [54], the Hodge duality operator is the same as
in the classical case. This is not so in our case because our deformations
are not isospectral — the algebraic torus actions are not isometries of the
natural Riemannian structures on toric varieties. This suggests appealing
to alternative formulations of the anti-self-duality equations in Eq. (1.1).
Details of all of these constructions can be found in [50].
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