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We survey our recent work on degenerations of Ricci-flat Kähler met-
rics on compact Calabi–Yau manifolds with Kähler classes approaching the
boundary of the Kähler cone.
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1. Introduction

A compact Kähler manifoldX of complex dimension n is called a Calabi–
Yau manifold if its first Chern class c1(X) vanishes in the cohomology group
H2(X,R). This is equivalent to requiring that the canonical bundle KX be
torsion, so that K⊗`X ∼= OX for some integer ` > 1. The following are some
simple examples of Calabi–Yau manifolds.

Example 1.1 Let X = Cn/Λ be the quotient of Euclidean space Cn by a
lattice Λ ∼= Z2n. ThenX is topologically just a torus (S1)2n and it has trivial
tangent bundle and therefore also trivial canonical bundle. All Calabi–Yau
manifolds of complex dimension n = 1 are tori, and are also called elliptic
curves.

Example 1.2 A Calabi–Yau manifold with complex dimension n = 2 which
is also simply connected is called a K3 surface. Every Calabi–Yau surface
is known to be either a torus, a K3 surface, or a finite unramified quotient
of these. In general these quotients will have torsion but non-trivial canon-
ical bundle, as is the case for example for Enriques surfaces which are Z/2
quotients of K3.
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Example 1.3 Let X be a smooth complex hypersurface of degree n + 2
inside complex projective space CPn+1. Then by the adjuction formula the
canonical bundle of X is trivial, and so X is a Calabi–Yau manifold. When
n = 1 we get an elliptic curve and when n = 2 a K3 surface. More gener-
ally, one can consider smooth complete intersections in product of projective
spaces, with suitable degrees, and get more examples of Calabi–Yau mani-
folds.

Example 1.4 Let T = C2/Λ be a torus of complex dimension 2 and con-
sider the reflection through the origin i : C2 → C2. This descends to an
involution of T with 16 fixed points (the 2-torsion points of T ), and we can
take the quotient Y = T/i which is a variety with 16 singular rational dou-
ble points (also known as orbifold points). We resolve these 16 points by
blowing them all up and we get a map f : X → Y , where X is a smooth K3
surface, known as the Kummer surface of the torus T .

The fundamental result about Calabi–Yau manifolds, which is also the
reason for their name, is the following:

Theorem 1.1 (Yau’s solution of the Calabi Conjecture, 1976 [22, 23]) On
any compact Calabi–Yau manifold X there exist Kähler metrics with Ricci
curvature identically zero, which naturally have restricted holonomy con-
tained in SU(n). Moreover, there is a unique such Ricci-flat metric in each
Kähler class of X.

To make this statement more precise, recall that a Kähler metric g to-
gether with the complex structure J of X defines a real closed 2-form ω
(the Kähler form) by the formula ω(X,Y ) = g(JX, Y ). Conversely, we can
recover g from ω by the formula g(X,Y ) = ω(X, JY ), and so we will often
refer to ω simply as the Kähler metric. The form ω is also J-invariant, in
the sense that ω(JX, JY ) = ω(X,Y ), which also means that it is of complex
type (1, 1). Therefore it defines a cohomology class

[ω] ∈ H2(X,R) ∩H1,1

∂
(X) =: H1,1(X,R) .

A cohomology class α in H1,1(X,R) which can be written as α = [ω] for
some Kähler metric ω is called a Kähler class. The set of all Kähler classes
is called the Kähler cone of X and is an open convex cone

KX ⊂ H1,1(X,R)

which has the origin as its vertex.
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With these notions in place, we can restate Theorem 1.1 by saying that
on a compact Calabi–Yau there is a unique Ricci-flat Kähler metric in each
Kähler class α ∈ KX . These metrics are almost never explicit, and Yau con-
structed them by solving a fully non-linear complex Monge–Ampère PDE.
Since the Kähler cone KX is open, the following question is very natural.

Question 1.1 What is the behaviour of these Ricci-flat Kähler metrics when
the class α degenerates to the boundary of the Kähler cone?

This question was posed by many people, including Yau [24, 25], Wil-
son [21] and McMullen [13]. To get a feeling for what the Kähler cone and
its boundary represent geometrically, we start with the following observa-
tion. If V ⊂ X is a complex subvariety of complex dimension k > 0, then
it is well known (from the work of Lelong) that V defines a homology class
[V ] in H2k(M,R). Moreover, if [ω] is a Kähler class, the pairing 〈[V ], [ω]^k〉
equals ∫

V

ωk = Vol(V, ω) > 0 ,

the volume of V with respect to the Kähler metric ω (Wirtinger’s Theorem).
It follows that if a class α is on the boundary of KX and if V is any com-
plex subvariety then the pairing 〈[V ], α^k〉 is non-negative, and moreover,
a theorem of Demailly–Păun [6] shows that there must be subvarities V with
pairing zero. Therefore, as we approach the class α from inside KX , these
subvarieties have volume that goes to zero, and the Ricci-flat metrics must
degenerate (in some way) along these subvarieties.

We now make Question 1.1 more precise. On a compact Calabi–Yau
manifold X fix a non-zero class α0 on the boundary of KX and let {αt}06t61

be a smooth path of classes inH1,1(X,R) originating at α0 and with αt ∈ KX
for t > 0. Call ωt the unique Ricci-flat Kähler metric on X cohomologous
to αt for t > 0, which is produced by Theorem 1.1.

Question 1.2 What is the behaviour of the Ricci-flat metrics ωt when t
goes to zero?

Of course, we could also consider sequences of classes instead of a path,
and all we are going to say in this paper works equally well in that case.
Notice that we are not allowing the class αt to go to infinity in H1,1(X,R) as
it approaches ∂KX . Because of this, we can prove the following basic fact,
independently discovered by Zhang [26]:
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Theorem 1.2 (Tosatti [19], Zhang [26]) The diameter of the metrics ωt has
a uniform upper bound as t approaches zero,

diam(X,ωt) 6 C . (1.1)

On the other hand, it is easy to construct examples of Ricci-flat Kähler
metrics with unbounded cohomology class that violate (1.1), by just rescaling
a fixed metric by a large number. There are also examples where the class
approaches the boundary of the Kähler cone: on the torus C2/Λ = T 2 × T 2

take the flat metric that gives one T 2 factor area t and the other T 2 factor
area t−1.

Going back to Question 1.2, the problem splits naturally into two cases
which exhibit a rather different behaviour, according to whether the total
integral

∫
X α

n
0 is strictly positive or zero. If

∫
X α

n
0 is positive this means

that the volume
Vol(X,ωt) =

∫
X

ωnt =
∫
X

αnt

remains bounded away from zero as t → 0, and this is called the non-
collapsing case. If

∫
X α

n
0 = 0 then the volume Vol(X,ωt) converges to zero,

and this is called the collapsing case.
The main Question 1.2 falls into the general problem of understanding

limits of sequences of Einstein manifolds with an upper bound for the diam-
eter (but no bound for the sectional curvature in general), a topic that has
been extensively studied (see e.g. [9, 1, 2, 17, 4]). Our results are of a quite
different nature from these works, because the convergence that we get is
in a stronger sense, we have uniqueness of the limit, and we do not need
to modify the metrics by diffeomorphisms. On the other hand, these other
works apply in much more general set-ups, and are especially effective in
complex dimension n = 2.

One final comment: in our work we always fix the complex structure
and vary the Kähler class. If instead one varies the complex structure as
well the behaviour is expected to be much more complicated, except in
complex dimension n = 2 where changing the complex or Kähler structure
are comparable operations because of an underlying hyperkähler structure.
In certain higher-dimensional cases, some convergence results have recently
been obtained by Ruan–Zhang [15].

2. Examples

First of all, notice that Question 1.2 is only interesting if

dimH1,1(X,R) > 1 ,
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because otherwise KX reduces to an open half-line and there is only one
Ricci-flat Kähler metric on X up to global scaling by a constant, so the only
possible degenerations are given by scaling this metric to zero or infinity. For
this reason, the Question 1.2 is essentially void on Calabi–Yau manifolds of
dimension n = 1 (i.e. elliptic curves).

Example 2.1 Let X = Cn/Λ be a complex torus. A Ricci-flat Kähler
metric on X is the same as a flat Kähler metric, and each flat metric can
be identified simply with a positive definite Hermitian n × n matrix. The
boundary of the Kähler cone is then represented by non-negative definite
Hermitian matrices H with non-trivial kernel Σ ⊂ Cn (notice that in this
case every class on ∂KX has zero integral, so we are always in the collapsing
case).

If the class α0 corresponds to such a matrix H with the kernel Σ which
is Q-defined modulo Λ, then we can quotient Σ out and get a map f : X →
Y = Cm/Λ′ to a lower-dimensional torus (m < n) such that H = f∗H ′

with H ′ a positive definite m ×m Hermitian matrix. It follows that when
t approaches zero, the (Ricci-)flat metrics ωt collapse to the flat metric on
Y that corresponds to H ′. Here, collapsing has the precise meaning that
the geometric limit (i.e. Gromov–Hausdorff limit) of (X,ωt) has dimension
strictly less than n.

If, on the other hand, the kernel Σ is not Q-defined, then Σ defines a
foliation on X (which is not a fibration anymore) and the limit H of the
(Ricci-)flat metrics is a smooth non-negative form which is transversal to
the foliation (that means, positive in the complementary directions).

Example 2.2 Let f : X → Y be the Kummer K3 surface of a torus T ,
where Y = T/i is the singular quotient of T and f is the blow-up map. Take
α0 to be the pull-back of an ample divisor on Y , and note that

∫
X α

2
0 > 0. If

we call E the union of the 16 exceptional divisors of f , that is the union of
the 16 spheres S2 which are the preimages of the singular points of Y , then
E is a complex submanifold ofX. Then Kobayashi–Todorov [11] proved that
for any path αt of Kähler classes that approach α0, the Ricci-flat metrics ωt
converge smoothly away from E to the pull-back of the unique flat orbifold
metric on Y cohomologous to the ample divisor we chose. Here, an orbifold
flat metric on Y simply means a flat metric on T which is invariant under i.
Note that since the limit Y has the same dimension as X, the Ricci-flat
metrics are non-collapsing. This convergence result is proved using classical
results on the moduli space of K3 surfaces, such as the Torelli theorem.

Example 2.3 Let X be a K3 surface which admits an elliptic fibration
f : X → CP1 = Y . This means that f is a surjective holomorphic map with
all the fibers smooth elliptic curves except a finite number of fibers which are
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singular elliptic curves. Again, we take α0 to be the pull-back of an ample
divisor on Y and note that

∫
X α

2
0 = 0. We also fix [ω] a Kähler class on X

and consider only paths which are straight lines of the form

αt = α0 + t[ω] ,

with 0 6 t 6 1. Again, we call ωt the unique Ricci-flat Kähler metric in
the class αt for t > 0, and we call E the union of all the singular fibers
of f . Then Gross–Wilson [10] have shown that when t goes to zero the
metrics ωt converge smoothly away from E to the pull-back f∗η, where η
is a Kähler metric on Y = CP1 minus the finitely many points f(E) with
singular preimage. Moreover, they show that away from E as t→ 0 we have

ωt ∼ f∗η + tωSF + o(t) ,

where ωSF is a semi-flat form, that is a (1, 1)-form that restricts to a flat
metric on each smooth torus fiber. More recently, Song–Tian [16] have
noticed that the metric η on CP1\f(E) satisfies

Ric(η) = ωWP ,

where ωWP is the pull-back of the Weil–Petersson metric from the moduli
space of elliptic curves via the map that to a point in CP1\f(E) associates
the elliptic curve which lies above that point. The (1, 1)-form ωWP is smooth
away from f(E) and is non-negative definite. If the fibers are all isomorphic
elliptic curves then ωWP vanishes identically; in this case X cannot be K3
but instead it is the torus of Example 2.1, and η is the (Ricci-)flat metric
H ′ there. In general ωWP measures the variation of the complex structure
of the fibers of f .

Example 2.4 McMullen [13] has constructed a non-algebraic K3 surface
X, an automorphism F : X → X with infinite order, a non-empty open set
U ⊂ X and a real number λ > 1 with the following property. If we fix any
Ricci-flat Kähler metric ω on X, and we consider the Ricci-flat metrics

ωn = λ−n(Fn)∗ω ,

then the cohomology classes [ωn] converge to a non-zero limit class α0 ∈ ∂KX
with

∫
X α

2
0 = 0, and the metrics ωn converge smoothly to zero on U . The set

U is a Siegel disk for the automorphism F , which means that U is F -invariant
and it is biholomorphic to a disk where F is conjugate to an irrational
rotation. The number λ is the largest eigenvalue for the action of F ∗ on
H1,1(X,R), and the class α0 is an eigenvector of F ∗ with eigenvalue λ.
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3. Main theorems

LetX be a compact Calabi–Yau manifold and α0 ∈ ∂KX with
∫
X α

n
0 > 0.

Let E be the union of all complex subvarieties where α0 integrates to zero
(E itself is a complex subvariety).

Theorem 3.1 (Tosatti [19]) In this situation there exists a smooth Ricci-
flat Kähler metric ω0 on X\E such that for any path αt as before, the Ricci-
flat metrics ωt with t → 0 converge to ω0 smoothly on X\E. Moreover,
if α0 ∈ H2(X,Q) then there exists a birational map f : X → Y with Y a
singular Calabi–Yau variety such that ω0 = f∗ω and ω is a singular Ricci-flat
Kähler metric on Y .

A singular Calabi–Yau variety can be defined in algebraic geometry as
a normal variety Y with at worst canonical singularities such that some
multiple of the canonical divisor KY is Cartier and it is trivial. A singular
Ricci-flat Kähler metric on such a space can be defined as a weak solution
of the complex Monge–Ampère equation, and its existence was proved by
Eyssidieux–Guedj–Zeriahi [8]. Strictly speaking Theorem 3.1 is only stated
in [19] for projective Calabi–Yau manifolds, but it is possible to extend the
arguments there to the more general Kähler case as stated here by using the
recent work of Boucksom–Eyssidieux–Guedj–Zeriahi [3].

This gives a possible answer to Question 1.2 in the non-collapsing case
when

∫
X α

n
0 > 0. We now consider the collapsing case when

∫
X α

n
0 = 0.

One major source of examples of such cohomology classes α0 is whenever we
have a holomorphic fibration f : X → Y , where Y is a variety with lower
dimension m < n, and we take α0 to be the pull-back of an ample divisor
on Y . Examples 2.1 and 2.3 above fall exactly in this category. A standard
conjecture in algebraic geometry, the log abundance conjecture, would imply
that whenever α0 ∈ ∂KX with

∫
X α

n
0 = 0 satisfies α0 ∈ H2(X,Q) then

there is a fibration f : X → Y so that α0 is the pull-back of an ample
divisor on Y . So conjecturally this picture is the general picture for rational
classes (compare also Example 2.1, where rational classes give a fibration
and irrational classes a foliation).

In this case we can always find a proper complex subvariety E ⊂ X
such that f : X\E → Y \f(E) is a smooth submersion. The subvariety E
is given by the union of all singular fibers together with all the fibers with
dimensions strictly larger than n−m. This implies that for any y ∈ Y \f(E)
the fiber Xy = f−1(y) is a smooth (n−m)-dimensional compact Calabi–Yau
manifold. If we fix a Kähler metric ω on X and use ω|Xy as polarization,
we get a map from Y \f(E) to the moduli space of polarized Calabi–Yau
(n−m)-folds, analogously to Example 2.3 above.
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Theorem 3.2 (Tosatti [20]) In this situation take αt = α0 + t[ω]. Then
there exists a smooth Kähler metric η on Y \f(E) such that the Ricci-flat
metrics ωt with t→ 0 converge to f∗η on X\E in the C1,β topology of Kähler
potentials (for any 0 < β < 1). Moreover, for any y ∈ Y \f(E) the metrics
ωt|Xy converge to zero in the C1 topology of metrics. The metric η satisfies

Ric(η) = ωWP ,

where ωWP is the pull-back of the Weil–Petersson metric from the moduli
space of polarized Calabi–Yau (n−m)-folds.

The Weil–Petersson metric has the same properties that we discussed
in Example 2.3. One can give a more explicit formula for ωWP as follows.
Since the smooth fibers Xy are Calabi–Yaus, there is an integer ` so that
K⊗`Xy

∼= OXy for all y ∈ Y \f(E). Thus we can find a holomorphic family
(parametrized by y ∈ Y \f(E)) of never-vanishing holomorphic sections Ωy
of K⊗`Xy

, and we get a volume form (Ωy ∧ Ωy)1/` on Xy. Then on Y \f(E)
we have

ωWP = −
√
−1∂∂ log

∫
Xy

(
Ωy ∧Ωy

)1/`
.

We note here that in the proof of Theorem 3.2 the assumption that αt = α0+
t[ω], which essentially means that αt does not approach ∂KX tangentially,
is used crucially in deriving the estimates which are described below.

4. Discussion

Theorems 3.1 and 3.2 are proved by showing suitable a priori estimates
for a degenerating family of complex Monge–Ampère equations. To be more
precise, Yau’s Theorem 1.1 is proved by solving the complex Monge–Ampère
equation of the form (

ω +
√
−1∂∂ϕ

)n
= Ω ,

where ω is a fixed Kähler metric, Ω is a certain fixed smooth volume form and
ϕ is a Kähler potential that we have to solve for, so the metric ω+

√
−1∂∂ϕ is

Ricci-flat. In this case Yau proved C3 a priori estimates for the potential ϕ,
or equivalently C1 estimates for the metric ω+

√
−1∂∂ϕ, and then deduced

higher order estimates by a standard bootstrapping argument.
In the setting of Theorems 3.1 and 3.2, we need to solve an equation of

the form (
f∗ωY + tωX +

√
−1∂∂ϕt

)n
= ctΩ , (4.2)

where ωX , ωY are fixed Kähler metrics on X and Y respectively, Ω is a fixed
smooth volume form on X and ct is a constant that is bounded away from
zero in Theorem 3.1 and is comparable to tn−m in Theorem 3.2.
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Equation (4.2) is equivalent to the fact that the Kähler metric ωt =
f∗ωY + tωX +

√
−1∂∂ϕt is Ricci-flat. From now on we will focus on Theo-

rem 3.2, where the analysis is much more complicated. The equations (4.2)
are complex Monge–Ampère equations that degenerate when t approaches
zero, in two different ways: first, the reference metrics f∗ωY + tωX degen-
erate, and second, the right-hand side approaches zero. In [20], we first
show that the Kähler potentials have uniformly bounded Laplacian on every
compact set of X\E (making crucial use of estimates of Kołodziej [12] and
extensions of these by Demailly–Pali [5] and Eyssidieux–Guedj–Zeriahi [7]).
Next, to prove collapsing, we show that the eigenvalues of the Ricci-flat met-
rics ωt in the n−m fiber directions are all of the order of t, so that the fibers
are shrunk in the limit. The remaining m eigenvalues are of the order of 1,
so the overall determinant of ωt is exactly of the order of tn−m, as required
by (4.2). More precisely, we prove that given any compact set K ⊂ X\E
there is a constant CK so that on K we have

C−1
K (f∗ωY + tωX) 6 ωt 6 CK(f∗ωY + tωX) .

Moreover, we show that when restricted to a smooth fiber Xy in K, the first
derivatives of ωt go to zero. Once all the necessary a priori estimates are
established, we can then pass to the limit weakly in (4.2) and get exactly the
equation for a metric on Y \f(E) with Ricci curvature equal to the Weil–
Petersson metric. More details can be found in [18,19,20].

Let us now mention a few open problems related to the above results,
which seem very interesting and perhaps not too far from accessible.

Question 4.1 It seems highly likely that if we consider the rescaled Ricci-
flat metrics (the so-called adiabatic limit)

ωt
t

∣∣∣∣
Xy

,

then these should converge to the unique Ricci-flat metric on Xy in the co-
homology class ω|Xy . If we denote by ωSF the semi-flat form, which is a
(1, 1)-form on X\E that restricts to the Ricci-flat metric on Xy cohomolo-
gous to ω|Xy , then this would imply that as t→ 0

ωt ∼ f∗η + tωSF + o(t) ,

exactly as in Example 2.3. Indeed if one could improve the convergence
result in Theorem 3.2, say to convergence in the C2 topology of Kähler
potentials, then this would follow easily by taking the limit in the corre-
sponding Monge–Ampère equations. Unfortunately, the convergence proved
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in Theorem 3.2 does not seem to be strong enough to conclude this. The
following is a stronger conjecture that as we said would directly imply Ques-
tion 4.1:

Question 4.2 In the setting of Theorem 3.2 prove that the convergence of
ωt to f∗η is actually in the smooth topology away from E. For this, it is
enough to prove uniform Ck estimates for ωt on each compact set of X\E,
independent of t > 0. In the proof of Theorem 3.2 we have showed that we
have uniform C0 estimates, and C1 in the fibers directions.

The natural remaining question is what happens to the Ricci-flat metrics
ωt when α0 is an irrational class with

∫
X α

n
0 = 0, so that there is no fibration

structure. We conjecture the following:

Question 4.3 In this situation there is a proper complex subvariety E ⊂ X
and a smooth non-negative (1, 1)-form ω0 on X\E, which satisfies ωn0 = 0,
so that the Ricci-flat metrics ωt converge smoothly away from E to ω0.

In this case taking the kernel of ω0 we would get a foliation on X\E
with leaves holomorphic subvarieties. In general, this foliation will not be a
holomorphic foliation, which means that the leaves will not vary holomor-
phically. In particular, the dimension of the leaves will not be constant, not
even on a Zariski open set ofX. One can see this in McMullen’s Example 2.4,
where (assuming that the metrics ωn converge to a non-negative form ω0)
the foliation has 0-dimensional leaves on the open set U , but it has non-zero
dimensional leaves somewhere else, since α0 6= 0. Under the assumption
that the sectional curvature of ωt remains uniformly bounded, Ruan [14]
has shown that Question 4.3 is correct, and that moreover, the foliation
defined by ω0 is holomorphic. Therefore, McMullen’s example shows that
Ruan’s result does not hold if the curvature is unbounded (the curvature of
ωn is of the order of λn).

One last problem that seems very interesting is whether the conver-
gence in Theorems 3.1 and 3.2 holds in the Gromov–Hausdorff sense. More
precisely, in Theorem 3.1 consider the metric space completion (Z, d) of
(X\E,ω0), while in Theorem 3.2 call (Z, d) the metric space completion of
(Y \f(E), η).

Question 4.4 In the setting of either Theorem 3.1 or 3.2, do the Ricci-
flat manifolds (X,ωt) converge to (Z, d) in the Gromov–Hausdorff sense?
Moreover, is Z homeomorphic to Y, the algebro–geometric limit?

The Gromov–Hausdorff converge is proved for K3 surfaces in the non-
collapsing case in [19], and there are further results in the non-collapsing
case by Ruan–Zhang [15]. In the case of collapsing K3 surfaces, this was
proved by Gross–Wilson [10].
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