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FORWARD AND MUELLER–NAVELET JETS∗
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We discuss the production of forward jets in high energy processes where
one probes a dense hadronic wavefunction. In particular, and as a signa-
ture of parton saturation, we discuss the possibility of a strong momentum
decorrelation in Mueller–Navelet jets which leads to a geometric scaling
behavior.
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1. Introduction

In high energy collisions of two hadrons, a large number of the produced
particles emerge in the forward directions. If such a particle of energy E
forms an angle θ with the beam axis, then it is convenient to decompose its
3-momentum in terms of its rapidity, representing the longitudinal momen-
tum, and its transverse momentum. For massless particles the rapidity is
equal to the pseudorapidity η = − ln tan(θ/2), while the magnitude of the
transverse momentum is k⊥ = E sin θ. Since the forward directions corre-
spond to θ being close to 0 or π, the standard belief until a few years ago
was that only soft physics is involved and one would have to resort on non-
perturbative phenomenological descriptions. However, it is obvious that a
large energy of the produced particle can compensate for the smallness of θ,
thus rendering k⊥ a perturbative scale. For instance, in p–p collisions at the
LHC it could be possible to measure jets at forward rapidities up to |η| ' 6.5
and transverse momenta as low as k⊥ ' 20 GeV.

In such a kinematic regime it is clear that one can use weak coupling
techniques. But the largeness of the rapidity indicates that fixed order per-
turbation theory might fail and calls for possible resummations to obtain
more reliable results. Indeed, this is what sometimes is called the semihard
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region of QCD, where k⊥ is much larger than ΛQCD but at the same time
much smaller than the total energy

√
s of the process and large logarithms

of the type ln s/k2
⊥ appear and need to be resummed.

Still, the aforementioned resummation might not be enough since when
looking at forward directions one is sensitive to the softer, small-x, com-
ponents of the wavefunction of the one of the incoming hadrons. Here by
components we refer to quarks and gluons, with the latter dominating be-
cause of their vectorial nature and the 3-gluon vertex in QCD. In the high
energy limit and/or for large nuclei (due to an ∼ A1/3 enhancement coming
from the 2D density of nucleons), the hadronic wavefunction becomes dense,
partons with sufficiently low, but perturbative, k⊥ can overlap and interact
with each other leading to a state of saturation [1]. Technically this means
that one has to perform a resummation of logarithms in the presence of a
background field which, in general, can be strong. This leads to non-linear
equations for the evolution of the partonic densities, with the non-linear
terms clearly corresponding to this partonic overlap and becoming impor-
tant in the saturation regime. Pictorially this is shown in Fig. 1 which is

Fig. 1. Parton evolution in QCD.

our standard picture for parton evolution in QCD. DGLAP is the evolution
corresponding to an increase in transverse momentum, and even though it
can lead to an increase in the number of partons, these become smaller and
smaller due to the uncertainty relation, and the wavefunction remains dilute.
BFKL is the evolution corresponding to an increase in ln(1/x), the number
of partons again increases but now they are typically of the same size and
the wavefunction becomes denser. For a given k⊥ we reach a point in x
where gluons start to feel the presence of each other, and these particular
modes saturate reaching their maximal allowed value of the order of 1/αs.
Clearly modes with a larger k⊥ will saturate at a smaller value of x, since the
partons will be smaller in size. Therefore, one arrives at the concept of the
saturation momentum, which increases with ln(1/x), and which is the bor-
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derline between the saturated and the non-saturated modes of the hadronic
wavefunction. Some estimates that one can give for the value of the satura-
tion momentum are Q2

s ∼ 1 GeV2 for protons at HERA, Q2
s ∼ 1.5 GeV2 for

gold nuclei at RHIC, Q2
s ∼ 2 GeV2 for protons at LHC and Q2

s ∼ 6 GeV2

for lead nuclei at LHC.

2. Dijet production at lowest order

At lowest order in perturbation theory the production of two jets is
shown in Fig 2. To the order of accuracy the incoming partons, here gluons,
participating in the process have zero transverse momentum p1⊥ = p2⊥ = 0.
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Fig. 2. Two jets at lowest order.

Momentum conservation along this transverse plane implies that
k1⊥ + k2⊥ = 0, that is, the azimuthal angle between the two outgoing
jets is ∆φ = π. Longitudinal momentum and energy conservation constrain
the longitudinal momentum fractions x1 and x2 of the incoming partons to
be expressed in terms of the center of mass energy

√
s and the outgoing jets

momenta as

x1 =
k1⊥√
s
eη1 +

k2⊥√
s
eη2 , x2 =

k1⊥√
s
e−η1 +

k2⊥√
s
e−η2 . (1)

Denoting by PS the phase space d2k1⊥d
2k1⊥dη1dη2 we have

dσ

dPS
=
∑
ij

x1fi
(
x1, µ

2
)
x2fj

(
x2, µ

2
)
δ(2)(k1⊥ + k2⊥)

dσ̂ij
dk2
⊥
, (2)

where k⊥ is the common magnitude of the momenta, i, j refer to the various
parton species, xfi(x, µ2) are the corresponding distribution functions and
σ̂ij the partonic cross-sections. The emission of an unobserved extra gluon
or quark will smear a bit the peak, but not much, since it is of higher order
in perturbation theory and we assume the coupling to be weak.
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3. Two jets in the forward direction

Because of the forward kinematics fixed order perturbation theory is not
sufficient. Let us first consider the case where both jets are produced in the
forward direction as shown in Fig. 3, that is we assume that η1 and η2 are
large, say positive, and close to each other.
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Fig. 3. Pair of jets in forward direction.

We have in mind collisions of asymmetric objects, like d–Au at RHIC [2],
with the forward direction being the one of the colliding deuteron. From the
kinematics in Eq. (1) it is straightforward to see that for fixed transverse
momenta x1 can be close to 1, but x2 is necessarily very small. The nuclear
wavefunction can be dense due to the A1/3 enhancement and due to the
resummation of large [ᾱs ln(1/x2)]n terms, with ᾱs = αsNc/π and Nc the
number of colors. High energy evolution proceeds via gluon cascades, as
shown in Fig. 3, which are ordered in longitudinal momentum. Such cascades
carry significant transverse momenta, during the scattering they are released
and thus there is a large imbalance in the transverse momenta of the two
forward jets and the “away peak” at ∆φ = π can disappear. In the BFKL
regime one has

dσ

dPS
=
∑
i

x1fi
(
x1, µ

2
)
Φg(x2,k1⊥ + k2⊥)

α2
s

k4
1⊥

, (3)

where Φg is the unintegrated gluon distribution function whose presence is
necessary in order to describe the transverse momentum “built-up” along
the cascade. Note that Eq. (3) is valid only so long as the gluon density
is not too high and the non-linearities can be neglected. In the presence of
saturation the cross-section involves also high point gluon correlators.

4. Mueller–Navelet jets

Finally, we consider the forward–backward case in p–p (or p–p̄) collisions,
that is when the two jets are separated by a large rapidity interval. These are
the Mueller–Navelet jets [3], where more precisely one has Y ≡ η1 − η2 � 1
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Fig. 4. Mueller–Navelet jets.

with |η1| ' |η2| and the corresponding diagram is shown in Fig. 4. We have
decided to view the process in a different way than the one of the forward
dijet in the previous section. Now, the resummation is performed in the
partonic cross-section, since the emitted gluons in the final state are ordered
in rapidity in order to get the dominant contribution. Nevertheless, one
can show that the kinematics in Eq. (1) holds approximately and we have
x1
√
s ' k1⊥e

η1 and x2
√
s ' k2⊥e

−η2 , so that one can choose x1 and x2 to
be “large”, say around 0.1. We can write the cross-section as

dσ

dPS
=
∑
ij

x1fi
(
x1, µ

2
)
x2fj

(
x2, µ

2
) dσ̂ij
d2k1⊥d2k2⊥

. (4)

As explained earlier, at the Born level we get two back-to-back jets and the
partonic cross-section is σ̂ij ∼ O(1). An extra “minijet” introduces some
decorrelation in the transverse plane and σ̂ij ∼ O(ᾱsY ), with two minijets
there is more decorrelation and σ̂ij ∼ O(ᾱ2

sY
2) and so on. We integrate over

the minijets phase space and sum for large Y to find (for any i, j)

dσ̂

d2k1⊥d2k2⊥
∼ α2

s

k2
1⊥k

2
2⊥

Φ (Y,k1⊥,k2⊥) , (5)

where Φ satisfies the BFKL equation. It grows exponentially with Y for
fixed k1⊥ and k1⊥ and imposes transverse momentum decorrelations in the
angle and the magnitude [4, 5]1.

As a particular example of these magnitude decorrelations, let us recall
that BFKL dynamics with the necessary inclusion of unitarity corrections
leads to geometric scaling [7,8,9], which was introduced and had its greater
success in e−p DIS at HERA [10]. Integrating the transverse momenta above
the thresholds Q1 and Q2 we have

1 An NLO BFKL calculation for some observables leads to results that are very close
to those obtained from an NLO DGLAP analysis [6].
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dσ

dx1dx2
= Feff

α2
s

Q2
2

1
2

+i∞∫
1
2
−i∞

dγ

2πi

(
Q2

2/Q
2
1

)1−γ
γ(1− γ)

exp[ᾱsχ(γ)Y ] + · · · , (6)

where Feff stands for the contributions from all the quark, antiquark and
gluon collinear distributions of the two colliding protons together with some
color factors, χ(γ) is the known eigenvalue function of the BFKL equation
and the dots stand for unitarity corrections. When Q1 is much larger than
Q2, but in such a way that the integrand in Eq. (6) varies slowly, the inte-
gration in the saddle point approximations leads to [11]

dσ

dx1dx2
= Feff

1
Q2

2

(
Q2

s

Q2
1

)1−γs
. (7)

In the above Q2
s = Q2

2e
λs(Y−Y0) is a “saturation scale”, with λs ' 0.3 [12],

Y0 ∼ (1/ᾱs) ln(1/α2
s ) and γs = 0.372 is the anomalous dimension dominating

the integration. Eq. (7) exhibits geometric scaling since, leaving aside the
slowly varying prefactor Feff , it depends only on two variables, Q2

2 and the
combined one Q2

s/Q
2
1, instead of the three Q2

1, Q2
2 and Y . This is analogous

to the scaling observed in γ∗p DIS, with the analogy being more precise if
we let Q2

2 → Λ2
QCD and Q2

1 → Q2, with Q2 the photon virtuality. Thus the
softer jet looks like the “target” with the harder jet being the “projectile”.

The difference with DIS is that here we have a very large saturation
scale to start with, which is by definition the threshold transverse momen-
tum of the softer jet and which furthermore evolves to higher values with
increasing Y . The price to pay is that the cross-section is proportional to
the “target” size squared which is 1/Q2

2. The rapidity Y0 corresponds to the
amount of evolution which is needed to saturate a small hadronic system,
like a dipole or a high-momentum parton, on the resolution scale set by its
own size. An NLO estimate gives Y0 ' 8 which is very well within the reach
of the LHC.

According to Eq. (7), one can explore the scaling behavior of this dijet
cross-section by keeping the transverse and longitudinal momenta of the
softer jet fixed, and vary those of the harder jet so that x1 remains fixed.
As said, this represents a strong momentum decorrelation and would test
BFKL dynamics and saturation.
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