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The linear σ-model has been widely used to describe the chiral phase
transition. Numerically, the critical temperature Tc of the chiral phase
transition is in agreement with other effective theories of QCD. However, in
the large-Nc limit Tc scales as

√
Nc which is not in line with the NJL model

and with basic expectations of QCD, according to which Tc is — just as
the deconfinement phase transition — Nc-independent. This mismatch can
be corrected by a phenomenologically motivated temperature dependent
parameter.
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1. Introduction

The Quantum Chromodynamics (QCD) at finite temperature and finite
density is a central topic in high energy physics. For small temperatures and
densities the quark and gluon degrees of freedom are confined in hadrons.
It is expected that there exists a region in the QCD phase diagram where
quarks and gluons behave like a plasma (deconfinement) [1,2]. The QCD La-
grangian does not allow to directly calculate the confinement/deconfinement
phase transition or the related chiral phase transition. The latter is math-
ematically well defined in the limit of zero quark masses, in which the
QCD Lagrangian is invariant under chiral symmetry transformation and
the chiral condensate is an exact order parameter [3, 4, 5]. Two effective
models, the Nambu–Jona-Lasino model (NJL) [6, 7, 8, 9] and the linear σ-
model [10,11,12], have been often used to study the properties of the chiral
phase transition.
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Beside these phenomenological approaches to QCD there is also the large-
Nc approximation [13, 14]. The number of color degrees of freedom in the
QCD Lagrangian is three, but a theory with an infinite large number of color
degrees of freedom shows a behavior similar to the one of a theory with three
colors. In the large-Nc limit the gauge symmetry of the QCD is changed
from SU(3) to SU(Nc � 3). Enlarging the number of colors also leads to
a modified QCD coupling gQCD in a way that for Nc → ∞ the product
g2
QCDNc remains constant. Quarks and gluons are still present but gluons
dominate the behavior of the theory. For low temperatures there still exists
an confined phase, where the degrees of freedom are mesons and baryons [15].
For high enough T it is believed that the theory is deconfined. Although
also in the large-Nc limit the theory is not solvable, it is significantly simpler
because only planar diagram survive.

2. Linear σ-model in the large-Nc limit

The linear σ-model [10, 11, 12], is an effective theory which is able to
describe the mass splitting of the pions and the sigma via spontaneous sym-
metry breaking. The model is built with terms which are invariant under
chiral symmetry transformation. In the vacuum the chiral symmetry is spon-
taneously broken and the pions emerge as Goldstone bosons. In the original
form there is no explicit Nc dependency. From former studies one knows
that the quark–antiquark meson masses are independent of the number of
colors, but the coupling of three mesons is suppressed by a factor of 1/

√
Nc

and the four mesons coupling by a factor of 1/Nc [14]. These scaling prop-
erties can be implemented by redefining the meson four point interaction
λ → 3λ/4Nc, while the parameter µ is not affected in the large-Nc limit:
µ→ µ. The Lagrangian of the σ-model as function of Nc reads

Lσ(Nc) =
1
2
(∂µΦ)2 +

1
2
µ2Φ2 − λ

4
3
Nc
Φ4 , (1)

where the scalar field σ and the pseudoscalar pion triplet ~π are described
by Φt = (σ, ~π). For µ2 > 0 the chiral condensate is ϕ0 = ϕ(T = 0) =
µ
√
Nc/3λ =

√
Nc/3 fπ. The only scale in the Lagrangian is fπ, to be

identified with the pion decay constant. Note that the chiral condensate
scales with ϕ0 ∝

√
Nc. The tree-level masses are not effected by the

Nc-scaling and read m2
σ = 3λf2

π − µ2, m2
π = 0.

The behavior at finite temperature can be analyzed using the Cornwall–
Jackiw–Tomboulis (CJT) formalism [16]. The gap equation for the chiral
condensate is

0 = ϕ(T )
(

3
Nc
λϕ(T )2 − µ2 +

9
Nc
λ

∫
Gσ +

9
Nc
λ

∫
Gπ

)
. (2)
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The full propagators Gσ and Gπ have the form

Gi =

∞∫
0

dk k2

2π2

1√
k2 +m2

i

[
exp

(√
k2 +m2

i /T

)
− 1
]−1

. (3)

The critical temperature Tc is defined as the temperature where the conden-
sate exactly vanishes ϕ(Tc) = 0. This leads to the following Nc dependent
scaling of the critical temperature

Tc(Nc) =
√

2fπ

√
Nc

3
∝ N1/2

c . (4)

For the case Nc = 3 one obtains the known result Tc =
√

2fπ, but it also
clearly emerges that Tc increases with Nc. This means that for Nc � 3
the chiral phase transition will not take place. The result is general for all
hadronic models which do not include color degrees of freedom or tempera-
ture dependent parameters. This result, first noticed in Ref. [17], contradicts
the results found in the NJL-model [7] where the critical temperature Tc re-
mains constant in the large-Nc limit, and with the fact that the related
confinement/deconfinement phase transition is expected to be proportional
to ΛQCD, which is a large-Nc independent quantity.

3. Phenomenological modification of the linear σ-model

In order to solve this discrepancy a phenomenological approach is pro-
posed. In Refs. [18, 19] it is argued that the T 2 scaling of order parameters
is general. A phenomenological way to take this property into account is to
make the parameter µ2 temperature dependent

µ2 → µ(T )2 = µ2

(
1− T 2

T 2
0

)
. (5)

The parameter T0 is a new temperature scale and should be of the order of
ΛQCD. The Eq. (5) modifies the gap equation (2) and leads to a different
critical temperature

Tc(Nc) = Td

(
1 +

T 2
d

2f2
π

3
Nc

)−1/2

∝ N0
c . (6)

The critical temperature is constant in the limit Nc →∞.
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Now we turn back to the Nc = 3 and study the case where the explicit
symmetry breaking term εσ is present. The complete Lagrangian including
a second temperature scale reads

Lσ(T0) =
1
2
(∂µΦ)2 +

1
2
µ2

(
1− T 2

T 2
0

)
Φ2 − λ

4
Φ4 + εσ . (7)

All parameters are fixed via the masses and the pion decay constant
(ε = fπM

2
π , λ = (M2

σ − M2
π)/(2f

2
π), µ2 = (M2

σ − 3M2
π)/2). The quan-

tity T0 is set to a value of T0 = 0.27 GeV. The vacuum masses are chosen to
be the following: the mass of the σ-field isMσ = 1.2 GeV (for the discussion
of the value of the σ mass in the vacuum, see Refs. [20] and refs. therein),
of the π-field is Mπ = 0.135 GeV and the value for the pion decay constant
is fπ = 92.4 MeV.

The finite temperature behavior for the masses, see Fig. 1, is similar
to the one with no temperature dependent parameters. Until the critical
temperature Tc is reached the temperature dependency of the pion mass
an the σ mass varies slowly. Close to Tc the mass of the σ drops and
slightly above Tc the mass becomes degenerated with the pion mass. At
high temperature both masses rise linearly.
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Fig. 1. Finite temperature behavior of the masses. The dashed line represents
the mass of the pions and the continuous line mass of the σ. Above the critical
temperature of Tc ≈ 200 MeV the masses become degenerated.

Beside these similarities there are two remarkable properties that differ.
First, the order of the phase transition is changed from a first order to a
crossover phase transition. Second, the critical temperature is lowered to
Tc ≈ 200 MeV. Both phenomena can be seen in Fig. 2, where the case
Nc →∞ is shown: in this limit the chiral symmetry is restored through the
new temperature scale T0 and not via mesonic loops.
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Fig. 2. The chiral condensate for different number of colors and temperature scale
T0. Continuous line: Nc = 3 and T0 = 270 MeV, dotted line: Nc = 3 and T0 →∞,
dashed line: Nc →∞ and T0 = 270 MeV.

4. Conclusions

In this work the mismatch between the NJL model and purely hadronic-
models in the large-Nc limit has been studied. We have found that the
linear σ-model implies a scaling of Tc which is at odd with the NJL model
and basic expectations [3].

In order to solve this issue, we have introduced a phenomenologically
motivated temperature dependent parameter. As a result, the critical tem-
perature remains constant in the large-Nc limit. Moreover, for Nc = 3 the
critical temperature is lowered to Tc ≈ 200 MeV, a value which is in line
with recent model and lattice results on the chiral phase transition.

Future studies should go beyond the simple phenomenological Ansatz
presented in this work and include, for instance, the coupling of hadrons to
the Polyakov loop [2, 21]. Preliminary results [22] show that this approach
also leads to the correct large-Nc scaling of the critical temperature Tc ∼ N0

c .

The author thanks F. Giacosa and D.H. Rischke for cooperation and
discussions.
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