
Vol. 4 (2011) Acta Physica Polonica B Proceedings Supplement No 4

YANG–MILLS SPECTRUM WITH AN ARBITRARY
SIMPLE GAUGE ALGEBRA∗

F. Buisseret†

University of Mons, Place du Parc 20, 7000 Mons, Belgium
fabien.buisseret@umons.ac.be

(Received July 27, 2011)

The mass spectrum of pure Yang–Mills theory in 3 + 1 dimensions is
discussed for an arbitrary simple gauge algebra within a quasigluon picture.
The general structure of the low-lying gluelump and glueball spectrum is
shown to be common to all algebras, excepted the lightest C = − glueballs
that only exist when the gauge algebra is Ar≥2. The shape of the static
energy between adjoint sources is also discussed assuming the Casimir scal-
ing hypothesis and finally, the obtained results are shown to be consistent
with existing lattice data in the large-N limit of an su(N) gauge algebra.
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1. Generalities

Although pure Yang–Mills (YM) theory with the gauge algebra su(3) has
logically been the most studied case so far, it can be in principle formulated
for any gauge algebra. When this algebra is simple, YM theory exhibits
asymptotic freedom, and a relevant question is: What is the global structure
of the low-lying YM spectrum and does it strongly depend on the considered
gauge algebra? This problem has been addressed within a quasigluon picture
in [1], whose results are summarized hereafter. Note that such a framework
has already proven to be remarkably successful in describing the low-lying
glueball spectrum in pure gauge QCD [2].

The YM field is defined as Aµ = Aµa T a(r), where T
a
(r) denotes the genera-

tors of an arbitrary simple Lie algebra in the representation r. The charge-
conjugated gluon field is ACµ = −AT

µ , where T denotes the transposition of
the T a(r) matrices. In 3+1 dimensions, the YM theory thus contains dim adj
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transverse massless vector particles, or gluons, where adj denotes the adjoint
representation of the considered algebra. Then the quantum state of a given
glueball made of ng quasigluons reads |ng; JPC〉 = |colour〉 ⊗ |spin-space〉,
the colour part being responsible for the charge conjugation and the spin-
space part being responsible for the total spin and parity. Let us recall that
the spin-space part of a given glueball state can be obtained and eventually
expressed in a LS-basis by resorting to the helicity formalism [3].

The emergence of a constituent picture appears naturally in Coulomb
gauge QCD [4], where the QCD Hamiltonian is written with the gluonic
field in the Coulomb gauge, for which the elimination of the non-dynamical
degrees of freedom generates an instantaneous non-perturbative interaction.
One can show that the Coulomb gauge gluon mass gap equation leads to a
gluon dispersion relation of the form ω2(q) = q2 +mg(q)2, in which the dy-
namically generated mass is qualitatively independent of the gauge algebra
and such that mg(0) is finite and positive [1]. The existence of such a mass
justifies a Fock space expansion of gluonic states in terms of states with a
given number of quasigluons (gluons with a dynamically generated mass).

2. Gluelumps and glueballs

Gluelumps are colour singlet bound states of the YM field in a static ad-
joint source defined as φ = φa T

a
(r). Although not “physical” in the sense that

they require the presence of an extra static source, gluelumps are neverthe-
less worth of interest since in QCD, φ can be thought as a pointlike, adjoint,
static quark–antiquark pair [5]. So, the gluelump mass is grosso modo the
binding energy of a heavy hybrid meson, and the lowest-lying gluelumps
should be one-quasigluon states, the presence of the static source allowing
to build a colour singlet. Indeed, the tensor product of the adjoint repre-
sentation by itself has schematically the following structure for any gauge
algebra

adj⊗ adj = •S ⊕ adjA ⊕ . . . , (1)

where the S (A) superscript denotes a(n) (anti)symmetric colour configura-
tion, and where the singlet is represented by •. The •S channel corresponds
to the configuration δabφ

aAbµ ∝ Tr(φAµ) = −Tr(φCACµ) and has always a
negative charge conjugation. The helicity formalism imposes that J ≥ 1 for
gluelumps, among which the lightest states are obviously those with J = 1:
They have the minimal rotational energy. The 1+− gluelump, being domi-
nated by a S-wave component, will be the lightest one, while the 1−− state
is a pure P-wave and will be heavier, as already found in su(3) lattice com-
putations [5, 6]. According to these last works, the typical gluelump mass
scale, i.e. Ml = (M1+− +M1−−)/2, is roughly equal to 1 GeV.
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We now turn to glueballs, which are colour singlet states made of quasi-
gluons only. As shown by (1), one can build from two quasigluons the sym-
metric colour singlet δabAaµAbν ∝ Tr(AµAν) = Tr(ACµA

C
ν), whose charge con-

jugation is positive. One finds four families of symmetrized two-quasigluon
helicity states that will not be written here for the sake of simplicity. It is
nevertheless worth saying that a look at their decomposition in a LS-basis
immediately suggests the mass ordering M0++ < M2++ , M0−+ , in agree-
ment with what has been found in su(3) lattice QCD [7]. Thus, any gauge
algebra allows the existence of two-quasigluon glueballs with C = +, that
should stand at the bottom of the glueball spectrum with a typical mass
of 2Ml. This estimate is an immediate consequence of the quasigluon pic-
ture. As an illustration, it can be remarked that the lightest glueball masses
are M0++ = 1.730(50)(80) GeV and M2++ = 2.400(25)(120) GeV, around
2Ml ≈ 2 GeV. Notice that no 1P+ glueball is expected around 2Ml, regard-
less of the considered gauge algebra.

It is worth going a step further and discuss the properties of glueballs
made of three quasigluons. The tensor product

adj⊗ adj⊗ adj =
{
•A ⊕ . . .
•A ⊕ •S ⊕ . . . only for Ar≥2

(2)

means that a totally antisymmetric colour singlet can always be formed,
typically by using the structure constants. One gets the colour structure
fabcAµaAνbA

ρ
c that can be shown to have C = + . A peculiar feature of

the algebras Ar≥2 is that they possess a totally symmetric invariant tensor,
generally denoted dabc, that allows to build the totally symmetric colour
singlet dabcAµaAνbA

ρ
c , with C = − . The phenomenological relevance of this

result is considerable sinceAr in its compact real form is the algebra su(r+1).
The lowest-lying three-quasigluon states should have a mass around 3Ml.
At such a mass scale one expects both excited two-gluon and low-lying three-
gluon states to coexist (and probably significantly mix) in the C = + sector.
There, only 1P+ states could safely be interpreted as three-gluon ones. No
glueball state around 3Ml is present in the C = − sector excepted when the
gauge algebra is Ar≥2. A check of that result is that 1+− and 3+− states
have been observed in su(3) lattice QCD with a mass of 2.940(30)(140) GeV
and 3.550(40)(170) GeV respectively [7], while no such states exist when
su(2) is used [8]. A summary plot is shown in Fig. 1.

3. Static energy

The static energy between coloured sources is an observable that is both
accurately computable on the lattice and relevant in view of understanding
the structure of confinement. Let us first focus on the potential energy



570 F. Buisseret

Fig. 1. (Colour online) Schematic representation of the YM spectrum for arbitrary
simple gauge algebras. MG denotes the mass of a given state, while Ml is the
typical mass of the lightest gluelumps. Results from su(3) lattice QCD have been
indicated for comparison (squares) [5, 7]; the error bars are not shown for clarity.

between two adjoint sources. Since YM theory is confining, the long-range
part of the potential energy should be given by a linear confinement (the
QCD string), in which we assume the string tension to follow the Casimir
scaling. The short-range part, however, should be dominated by one-gluon-
exchange effects, and renormalization theory tells us that the strong coupling
constant reads αs = α0/C

(adj)
2 , where C(adj)

2 is the quadratic Casimir in the
adjoint representation. The static energy is then expected to behave like
V2g(R) = σ0R−α0/R, where the values of σ0 and α0 could be measured on
the lattice for any gauge algebras.

A particularly interesting case is that of the static energy between three
adjoint sources. It can be read from (1) and (2) that the following colour
structure exists for any algebra: [[adj, adj]adjA , adj]•

A , i.e. each pair is in
the adjoint representation, while the three sources are in an antisymmetric
colour singlet. Assuming that each source generates an adjoint flux tube,
the long-range part of the static energy corresponding to the above colour
configuration should be given by the so-called Y -junction potential VY =
σ0
∑3

i=1 |ri −Y |, where the source’s positions are denoted ri. The point Y

where the flux tubes meet is such that the sum
∑3

i=1 |ri−Y | is minimal. But,
the Y -junction potential is not the only allowed possibility. Excepted for E8

indeed, the adjoint representation is not the lowest-dimensional one, that is
here called fundamental and denoted f . It can be checked that the adjoint
representation appears in the tensor product f ⊗ f when the algebra is self-
dual, and in the tensor product f ⊗ f̄ when the algebra is not self-dual, that
is for Ar≥2 and E6. This means that an adjoint source can always generate
two fundamental (or a fundamental and a conjugate) flux tubes instead of
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an adjoint one, E8 excepted. In the case where fundamental flux tubes are
present, the long-range potential will be referred to as a ∆-potential, whose
form is V∆ = (C(f)

2 /C
(adj)
2 )σ0

∑3
i<j=1 |ri − rj | .

When the three adjoint sources are located on the apices of an equilat-
eral triangle, one can compute that VY /V∆ = C

(adj)
2 /(

√
3C(f)

2 ). If this ratio
is > 1 (< 1), V∆ (VY ) is energetically favoured. For example, VY /V∆ > 1
for the Ar-family, and in particular for the gauge algebra su(3) in agreement
with the results of [9]. It appears that the gauge algebras for which the
Y -junction is maximally favoured are E7 and E8, while a ∆-shape is maxi-
mally favoured in the case of A1, A2 and C2.

4. Concluding comments: the large-N limit

As an application of the above discussion, the special case of the gauge
algebra su(N) (AN−1) is worth being discussed since it is related to the
large-N limit of QCD. In the recent work [10], it has been checked that
the glueball spectrum obtained on the lattice is accurately described by
MG(N) = MG(∞) + cG/N

2 with cG compatible with zero up to a few
exceptions. In our quasigluon approach, both σ0 and α0 are independent of
N by definition of the ’t Hooft limit [1]. Consequently, nothing in the two-
body part of an explicit Hamiltonian would depend on N , in agreement with
a value of cG compatible with zero. One can moreover check the remarkable
independence of N for the masses of the lightest scalar, pseudoscalar and
tensor glueballs in [10]. Another check of the quasigluon picture in the two-
quasigluon sector is provided by the earlier data of [11]. In this last work, the
scalar and tensor glueball masses are computed for different values of N but
normalized to

√
σ(f). Since the 0++ and 2++ masses should be independent

of N in a quasigluon picture, all the N -dependence will be contained in the
normalization factor. Following the Casimir scaling hypothesis, one expects,
for a two-quasigluon state,

Mgg√
σ(f)

=

√
2N2

N2 − 1
θgg . (3)

The above formula compares favourably to the lattice data, see Fig. 2.
In the case of a three-quasigluon glueball, the static potential between

three quasigluons can be either N -independent, VY , or N -dependent, V∆.
The dependence (or not) on N arises at the level of the confining term, which
contains the only dimensioned parameter of the system, that is the string
tension. So the mass of a three-quasigluon state should be either constant
if VY is used, or of the form

M∆
ggg =

√
N2 − 1

2N2
θggg (4)
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Fig. 2. Left panel: 0++ and 2++ masses normalized to the fundamental string
tension computed on the lattice (black and gray points) for various N [11]. The
lattice data are compared to formula (3) with θgg = 2.33 and 3.28 for the 0++ and
2++ glueballs, respectively. Right panel: Lightest 1+− mass in units of the lattice
spacing computed on the lattice (black and gray points) for various N [10]. The
lattice data are compared either to a constant mass aMggg = 1.64 (dotted line) or
to formula (4) with a θggg = 2.37 (solid line).

if V∆ is used. This last case is a priori favoured for the gauge algebra su(N),
as discussed in the previous section. The evolution of the 1+− glueball mass
versus N has been computed in [10]; it can be seen in Fig. 2 that both a
constant mass and formula (4) are compatible with the current error bars.
Nevertheless, this in an indication that further lattice calculations in the
C = − glueball sector could be very useful in order to disentangle the
different models of confinement.
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