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The QCD transition is studied on lattices up to Nt = 16. The chiral
condensate is presented as a function of temperature, and the corresponding
transition temperature is extracted. The equation of state is determined on
lattices with Nt = 6, 8, 10 and at some temperature values with Nt = 12.
The pressure and the trace anomaly are presented as functions of the tem-
perature in the range 100–1000 MeV. Using the same configurations we
determine the continuum extrapolated phase diagram of QCD on the µ–T
plane for small to moderate chemical potentials. Two transition lines are
defined with two quantities, the chiral condensate and the strange quark
number susceptibility.
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1. Introduction

The study of QCD thermodynamics is receiving increasing interest in
recent years. A systematic approach to determine the properties of the
deconfinement phase transition is through lattice QCD. Lattice simulations
indicate that the transition at vanishing chemical potential is merely an
analytic crossover [1]. Some interesting quantities that can be extracted

∗ Presented at the Workshop “Excited QCD 2011”, Les Houches, France, February
20–25, 2011.

(593)



594 S. Borsanyi et al.

from lattice simulations are the transition temperature Tc, the QCD equation
of state and, for small chemical potentials, the phase diagram in the µ–T
plane: we review the results on these observables that have been obtained
by our collaboration using the staggered stout action with physical light and
strange quark masses, thus ms/mud ' 28 [2, 3]. For all details we refer the
reader to Refs. [4, 5, 6]. For a pedagogical review see Ref. [7].

2. The QCD transition temperature

We present here the results for several quantities. We study strange
susceptibility, the Polyakov-loop and the chiral condensate, and extract the
value of Tc associated to these observables. The Tc values are different which
reflects the nature of the crossover transition. For details we refer the reader
to Ref. [4].

The strange susceptibility does not need any additional renormalization.
The renormalization procedure of the Polyakov loop was given in [3]. The
temperature dependences of the strange susceptibility and the Polyakov loop
are shown in Fig. 1. The chiral condensate is defined as〈

ψ̄ψ
〉
q

= T∂ lnZ/(∂mqV ) for q = u, d, s . (1)

It is an indicator for the remnant of the chiral transition, since it rapidly
changes around Tc. Its renormalization is given in [1].

Fig. 1. Left: Strange quark number susceptibility as a function of temperature.
Right: Renormalized Polyakov loop as a function of temperature. In both figures,
the different symbols correspond to different Nt. The gray band is the continuum
extrapolated result.

A similar quantity can be defined as

∆l,s =

〈
ψ̄ψ

〉
l,T
−ml/ms

〈
ψ̄ψ

〉
s,T〈

ψ̄ψ
〉
l,0
−ml/ms

〈
ψ̄ψ

〉
s,0

(2)
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for l = u, d. Since the results at different lattice spacings are essentially
on top of each other, we connect them to lead the eye (see Fig. 2). The
value of Tc that we obtain from the inflection point of the latter observable
is Tc = 157(3)(3). The lattice results can be compared with the predictions
of the hadron resonance gas model. As it is shown in Fig. 3 the two results
agree up to quite high temperatures.
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Fig. 2. Left: Renormalized chiral condensate 〈ψ̄ψ〉R defined in Ref. [4]. Right:
Subtracted chiral condensate ∆l,s defined in Eq. (2). In both figures, the different
symbols correspond to different Nt. The gray band is our continuum estimate.

Fig. 3. Left: Renormalized chiral condensate as defined in Ref. [4]. Right: Sub-
tracted chiral condensate ∆l,s as defined in Eq. (2), as a function of temperature.
Gray bands are the continuum results of our collaboration, obtained with the stout
action. Full symbols are obtained with the asqtad and p4 actions [8, 9]. In both
panels, the solid line is the HRG model result with physical masses. The error band
corresponds to the uncertainty in the quark mass-dependence of hadron masses.
The dashed lines are the HRG+χPT model result with distorted masses, which
take into account the discretization effects and heavier quark masses used in [8, 9]
for Nt = 8 and Nt = 12.
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It is also instructive to compare the present results obtained on Nt = 6,
8, 10, 12 and 16 with the results of the HotQCD Collaboration (cf. [4]).
Figure 4 shows this comparison. As it can be seen, the results of the HotQCD
Collaboration are getting closer and closer to our predictions. The long
standing discrepancy is disappearing.

Fig. 4. The subtracted chiral condensate ∆l,s as a function of temperature. We
show a comparison between stout, asqtad, p4 and HISQ [8, 9] results. Our results
are shown by colored open symbols, whereas the hotQCD results are shown by
full black symbols. The gray band is our continuum result, the thin lines for the
hotQCD data are intended to lead the eye. Our stout results were all obtained
by the physical pion mass of 135 MeV. The full dots and squares correspond to
mπ = 220 MeV, the full triangles and diamonds correspond to mπ = 160 MeV of
the hotQCD Collaboration.

3. QCD equation of state

Next, we present our results regarding the equation of state. The details
of this calculation can be found in [5]. It is important to emphasize that
quark masses were set to their physical values and we used quite fine lattices
upto Nt = 12. We have explicitely showed that for our systems the finite
volume corrections are under control. The left plot in Fig. 5 shows two
systems. One of them with a volume V the other one with a volume of 8V .
As it can be seen for the whole temperature range, there are practically no
finite volume corrections, the two curves are lying on top of each other.

In the right plot in Fig. 5 we show the trace anomaly for the 2 + 1
flavor system at four different lattice spacings. Results show essentially
no dependence on “a”, they all lie on top of each other. Only the coarsest
Nt = 6 lattice shows some deviation around ∼ 300 MeV. On the same figure,
we zoom in to the transition region. Here, we also show the results from the
Hadron Resonance Gas model: a good agreement with the lattice results is
found up to hight T .
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Fig. 5. Left: The trace anomaly on lattices with different spatial volumes:
Ns/Nt = 3 (red band) and Ns/Nt = 6 (blue points). Right: The trace anomaly
I = ε− 3p normalized by T 4 as a function of temperature on Nt = 6, 8, 10 and 12
lattices.

In order to obtain the pressure, we determine its partial derivatives with
respect to the bare lattice parameters. p is then rewritten as a multidimen-
sional integral along a path in the space of bare parameters. The result is
shown in Fig. 6, left. To obtain the EoS for various mπ, we simulate for a
wide range of bare parameters on the plane of mu,d and β (ms is fixed to
its physical value). Having obtained this large set of data we generalize the
integral method and include all possible integration paths into the analy-
sis [5, 10]. We remove the additive divergence of p by subtracting the same
observables measured on a lattice, with the same bare parameters but at a
different T value. Here we use lattices with a large enough temporal extent,
so it can be regarded as T = 0. The right plot of Fig. 6 shows the entropy
density.

Fig. 6. The pressure (left) and the entropy density (right) normalized to temper-
ature as a function of temperature on Nt = 6, 8 and 10 lattices. The Stefan–
Boltzmann limits (p/T 4)SB ≈ 5.209 and (s/T 3)SB ≈ 20.836 are indicated by an
arrow. For our highest temperature T = 1000 MeV the pressure is almost 20%
below this limit.
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It is also instructive to compare the present results obtained on Nt = 6,
8, 10 and 12 with the results of the HotQCD Collaboration (cf. [4]). Figure 7
shows this comparison for the trace anomaly. As it can be seen, the results
of the HotQCD Collaboration are still quite far away from our results. Their
peak position is about at a 20 MeV higher temperature, whereas their peaks
heights are about 50% larger than ours. The clarification of this discrepancy
remains for the future.
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Fig. 7. The normalized trace anomaly obtained in our study is compared to recent
results from the “hotQCD” Collaboration [8, 11].

4. The QCD phase diagram at nonzero quark density

We provided results for the transition temperatures Tc at vanishing chem-
ical potential (µ = 0). Now we move out to the µ 6=0 plane (for the details
see [6]). There are several possibilities. Figure 8 shows two scenarios. In
principle, it is possible that the transition temperatures (e.g. the one related
to the chiral condensate and the one related to the strange susceptibility) are
getting closer and closer to each other as the chemical potential increases.
One might even end up with a critical endpoint. It is also possible that
the transition is getting weaker and weaker and the difference between two
transition temperatures increases as we increase the chemical potential. In
this section we determine the leading order behaviour of the transition lines.
Note, that this order will be not able to tell the difference between these
two scenarios, thus it cannot prove or exclude the existence of the critical
endpoint. To that end one has to determine higher order terms.

As we will see as one increases µ the transition temperature Tc(µ2) de-
creases. Let us parameterize the transition line in the vicinity of the vertical
µ = 0 axis as Tc(µ2) = Tc(1− κ · µ2/T 2

c ).
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Fig. 8. Two possible scenarios for the QCD phase diagram on the µ–T plane, defined
using a given observable. The left panel shows a phase diagram with a transition
growing stronger and possibly even turning into a real, first-order phase transition
at a critical endpoint. The right panel on the other hand corresponds to a scenario
with a weakening transition and no critical endpoint. The paths corresponding to
systems describing the early Universe and a heavy ion collision are also shown by
the arrows. Note that different observables may lead to different scenarios.

In order to determine the transition temperature as a function of µ, we
use two quantities which are monotonic in the transition region and do not
depend on µ for zero or infinite temperatures. The transition temperature is
defined as the temperature value at which these observables take their value
as given by the inflection points of the curves at µ = 0.

The two observables we use are the renormalized chiral condensate and
the normalized strange quark number susceptibility. In order to measure the
µ dependence of these quantities, we apply reweighting. Since our lattices
are quite large the full reweighting method is quite expensive. Therefore,
we truncate the µ dependence of the weights at µ2 order (this truncation of
the original [12,13] method is usually called the Taylor method; for a recent
application see [14]).

The strange quark number susceptibility is the second derivative of the
partition function with respect to the strange chemical potential. It needs
no renormalization, since it is related to a conserved current. It is useful to
normalize it by T 2, which provides a dimensionless combination. It is easy
to see that at T = 0 its value is 0, whereas for infinitely large temperatures
it approaches the Stefan–Boltzmann limit of 1.

For the chiral condensate we apply here a slightly different renormaliza-
tion prescription than what was used for the determination of Tc. We cancel
the additive divergences by subtracting the T = 0 contribution, while the
multiplicative divergence due to the derivative with respect to the mass can
be eliminated with a multiplication by the bare quark mass. Then, in order
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to have a dimensionless combination the whole expression can be divided by
the fourth power of some dimensionful mass scale. In this work we use the
T = 0 pion mass for the normalization. This observable has also µ indepen-
dent limiting values at zero and at infinitely high temperatures (at T = 0
this is true for chemical potentials smaller than the baryon mass, well within
our applicability region).

Our final result for the phase diagram on the µ–T plane is shown in
Fig. 9. The crossover region’s extent changes little as the chemical potential
increases. The two definitions give slightly different curves for Tc(µ). In this
order of the Tc(µ) curve we do not see the critical endpoint. One should
emphasize, that this is not a signal for non-existence of the critical point.
This order neither can exclude nor prove the existence of the critical end-
point. It is useful to compare the whole picture to the freeze-out curve which
summarizes experimental results on the T–µ points where hadronization of
the quark-gluon plasma was observed. This curve is expected to lie in the
interior of the crossover region, as is indicated by our results as well.

Fig. 9. The crossover transition between the “cold” and “hot” phases is represented
by the shaded (colour on-line) area (blue and red correspond to the transition
regions obtained from the chiral condensate and the strange susceptibility, respec-
tively). The lower solid band shows the result for Tc(µ) defined through the chiral
condensate and the upper one through the strange susceptibility. The width of the
bands represent the statistical uncertainty of Tc(µ) for the given µ coming from
the error of the curvature κ for both observables. The dashed line is the freeze-out
curve from heavy ion experiments [15]. Also indicated are with different symbols
the individual measurements of the chemical freeze-out from RHIC, SPS (Super
Proton Synchrotron) and AGS (Alternating Gradient Synchrotron), respectively.
The center of mass energies

√
sNN for each are shown in the legend.
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