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Novel nonperturbative properties of QED in three dimensions are exam-
ined at finite temperature. We show that infrared divergences are endemic
to the theory and discuss difficulties in computing the electric screening
mass.
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1. Introduction

A variety of novel features has spurred interest in low-dimensional QED
for many decades [1]. For example, high temperature QCD can be repre-
sented as the dimensionally reduced QCD3. If the number of quark flavours
(Nf ) is large, the non-Abelian behaviour of the theory is suppressed and
it may be approximated as quantum electrodynamics in three dimensions
(QED3) [2]. Massless QED3 in the large Nf limit generates dynamical
fermion masses that are suppressed exponentially in the fermion number.
Thus this theory illustrates how large mass hierarchies can be dynamically
generated [3, 4], which is of interest to BSM physics.

The extension of a reliable computational scheme for QED3 to finite tem-
perature is of interest due to its many condensed matter applications [5].
This is a technically challenging problem, and past attempts have been
forced to make many additional approximations beyond the truncation of
the Schwinger–Dyson equations. The most immediate concern is the lack
of covariance which makes dynamical quantities a function of two variables,
p0, ~p, rather than simply p2. This raises the computational requirements by
one or two orders of magnitude.
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An additional concern is the presence of infrared divergences in the for-
malism. Infrared divergences are exacerbated at nonzero temperature be-
cause perturbative diagrams are dominated in the infrared limit by the lowest
available Matsubara frequency, which is zero in bosonic sums. Thus, even
though QED3 is infrared finite at zero temperature, problems may arise
again at nonzero temperature. This issue has engendered some confusion in
the literature. Some authors have noted that an infrared divergence exists,
but have ignored it [6], or imposed an infrared cutoff [7], or assumed that
higher order corrections remove the divergence [8]. Many authors simply
evade the issue entirely by employing the approximation [9]

iDµν (ω, ~q )→ iD00 (0, ~q ) . (1)

2. QED3 at finite temperature

We shall argue that infrared divergences are endemic to QED3 at fi-
nite temperature. Furthermore, the problem is not alleviated by finite
fermion masses. Nevertheless, observables are finite and the theory is well-
defined [10].

We employ the imaginary time formalism and choose to work covariantly,
which necessitates introducing a three-vector, nµ, that represents the heat
bath. Thus the full fermion propagator is

S =
i

(A0 −A) p0/n+A /p−B
. (2)

Here,
pµ = (iωn, ~p ) , (3)

where ωn = (2n+ 1)πT is a fermionic Matsubara frequency and A, B, and
A0 are functions of ωn and ~p.

2.1. Photon propagator

The vacuum polarisation tensor remains transverse at finite temperature,
however, the presence of an additional three-vector permits two transverse
tensors

PLµν(n, q) = q̂⊥µ q̂
⊥
ν (4)

and
P⊥µν(n, q) = gµν −

qµqν
q2
− PLµν(q) . (5)

A transverse three-vector has been defined as

q⊥µ = qµ − nµ
q2

n · q
. (6)
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With these definitions one can parameterise the photon self energy as

Πµν(n, q) = P⊥µνΠ⊥ + PLµνΠL + iεµναq̂
αΠ̃ + iq̂⊥µ εναβ q̂

αq̂β⊥Π4

+iq̂⊥ν εµαβ q̂
αq̂β⊥Π5 + εµαβενα′β′ q̂

αq̂α
′
q̂β⊥q̂

β′

⊥ Π6 . (7)

Note that Π̃, Π4, Π5, and Π6 are all null for four-component fermions
and it is possible to combine the Π4 and Π5 terms into symmetric and
antisymmetric tensors.

The full photon propagator is

iDµν(n, q) = D⊥P
⊥
µν +DLP

L
µν − iξ

qµqν
q4

+ iD̃εµναq̂
α + iD4q̂

⊥
µ εναβ q̂

αq̂β⊥

+iD5q̂
⊥
ν εµαβ q̂

αq̂β⊥ +D6εµαβενα′β′ q̂
αq̂α

′
q̂β⊥q̂

β′

⊥ . (8)

2.2. Infrared divergences

It is known that ΠL is nonzero at zero momentum: this provides electric
screening in-medium.

The one-loop expression for the Chern–Simons form factor is

Π̃(mat)(0, q → 0) = αq tanh
m

2T
. (9)

This result should be compared to the zero temperature form factor

Π̃(0) = αq
m

|m|
. (10)

We remark that both of these results hold to all orders due to a theorem of
Coleman and Hill [11].

An old argument due to Fradkin [12] establishes that Π⊥ is zero at
(ω, ~p ) = (0, 0). This statement can be extended to

Π⊥(0, q → 0) = c⊥q
2 +O

(
q4
)
. (11)

This is explicitly true to O(e5) in QED4 and Blaizot et al. [13] argue that
it is true to all orders. The basic idea is that the nonvanishing minimum
fermionic Matsubara frequency makes the self energy an analytic function
of q2. An expansion about q = 0 then yields Π⊥ → 0 +O(q2), with the odd
terms vanishing due to rotational invariance. We note that this argument
generalises directly to three dimensions. This result is important because it
implies that there is no dynamical screening in the magnetic sector.
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The lack of magnetic screening leads directly to an infrared divergence
in the fermion self-energy, as we now demonstrate. Consider the exact ex-
pression for the fermion self energy

iΣ(p) = e2T
∑
n

∫
d2q

(2π)2
γνS(q)Γµ(p, q)Dµν(p− q) . (12)

We employ the finite temperature version of the Ward identity to obtain
the leading behaviour of the fermion self energy when q = p− η

Γν(p+ η, p) =
∂S−1(p)
∂pν

+ ηα
Γν
∂pα

+ . . . . (13)

The leading infrared behaviour is obtained when ν (or q0) is zero, we there-
fore set ν = 0 in the following. One obtains

divΣ(p) = −ie2T
[
γνS(p)

∂S−1

∂pµ

]
div

∫
ΛIR

d2η

(2π)2
Dµν(η) (14)

= ie2T

[
γν
∂S

∂pµ
S(p)−1

]
div

∫
ΛIR

d2η

(2π)2

×
[
nµnνDL +

nµnν − gµν
2

(
−D⊥ +D6 − i

ξ

η2

)]
. (15)

For two-component fermions only the gauge term is infrared divergent if the
photon mass is nonzero. If it is zero one has

divΣ(p) = ie2T

[
γν
∂S

∂pµ
S(p)−1

]
nµnν − gµν

4π

[
−i 1

1− c⊥
− iξ

]
logΛIR .

(16)
Thus a logarithmic infrared divergence appears in the fermion propaga-

tor. This statement is exact, only relying on the Ward identity, the existence
of 1/q2 terms in the exact photon propagator, and general properties of the
photon form factors. It is clear that a finite fermion mass does not change
this conclusion. However, a finite photon mass regulates the transverse part
of the propagator, leaving only the divergence in the gauge term. These
expressions make it clear that the infrared divergence does not affect ob-
servables. For example, it is possible to choose a gauge to eliminate the
divergences entirely.
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2.3. The electric screening mass

The electric and magnetic screening masses are defined in terms of the
longitudinal and transverse form factors of Eq. (7)

m2
el = lim

p→0
ΠL(ω = 0, p) , (17)

m2
mag = lim

p→0
Π⊥(ω = 0, p) . (18)

Of course, as stated above, the magnetic screening mass should be zero.
The electric screening mass is an experimental observable and hence should
be infrared and ultraviolet finite. Here we run into a problem: the naive
application of Eq. (17) yields an infinite result for mel. The problem can be
traced to a few linked causes:

(i) A superrenormalisable field theory can still contain divergences (al-
though only a finite number of diagrams diverge).

(ii) The zero temperature photon self energy tensor is given in terms of
a scalar function as Πµν = PµνΠ, if the regulator and truncation scheme
respect gauge invariance. If this is not the case one must write

Πµν = gµνΠ∞ + PµνΠ . (19)

The new scalar function diverges. This function was neglected in previous
analyses by simply projecting it away.

(iii) The projection trick no longer works at finite temperature. To
obtain a finite screening mass one must renormalise properly; the final, finite,
expression is

m2
el = lim

|~p |→0
[ΠL(0, ~p ) +Π∞(0, ~p )−Π(p)−Π∞(p)] . (20)

(In fact, the presence of the gµν term requires a photon mass term 1
2µAνA

ν

in the Lagrangian and this expression is more conveniently expressed at the
renormalisation point ω = µ, ~p = 0 for T > 0 and p2 = µ2 for T = 0.)

Unfortunately, this expression is very difficult to evaluate numerically.
The divergence in the finite and zero temperature portions must cancel.
A simple cutoff regulator will not do since it is implemented differently in
three dimensions and 2 + 1 dimensions. Numerically implementing dimen-
sional regularisation is also not sufficient because this method can only deal
with logarithmic divergences, and we have linear divergences. A third pos-
sibility is Pauli–Villars regularisation. This has the benefit of maintaining
gauge invariance and separately regulates the zero and finite temperature
portions of m2

el, which is desirable. Unfortunately, this doubles the compu-
tational effort as fermion functions (A0, A, B) must be obtained numerically



608 E. Swanson, P.M. Lo

for the Pauli–Villars fermion. Furthermore, one must extrapolate to large
Pauli–Villars mass to obtain a cutoff independent result. This is very incon-
venient because obtaining accurate results for large fermion mass is difficult.
A possible way out of this numerical morass is to implement a judicious
subtraction.

These options are currently under investigation and we hope to be able
to report first-ever predictions of the truncated Schwinger–Dyson equations
without additional approximations for finite temperature gauge theories in
the near future.

This research was supported by the U.S. Department of Energy under
contract DE-FG02-00ER41135 and an Andrew W. Mellon Predoctoral Fel-
lowship.
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