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We give a general overview about the approaches to study the phase
diagram of QCD. Thereafter, we examine the evolution of a fireball in a
chiral fluid dynamic model including nonequilibrium effects.
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1. Introduction

At high temperature and densities strongly interacting matter is sup-
posed to form a plasma of quarks and gluons, while at low temperatures
and densities it consists of hadronic degrees of freedom. Between these two
regimes there must be a phase transition with two aspects, chiral symmetry
and confinement. For the study of the phase diagram of QCD you have
three possible ways to go.

First, you are brave and solve the partition function of QCD. This neces-
sarily involves nonperturbative methods, the most promising of which is lat-
tice QCD. With large numerical power QCD is solved on a discretized space-
time lattice. This method is, however, only feasible at zero or very small
baryonic densities, where it shows that the phase transition is a crossover [1].
The left plot of Fig. 1 shows what we know about the phase diagram from
lattice QCD.

Second, you are strong and collide heavy ions at ultrarelativistic energies.
Neutron stars are too far in space and astrophysical observations are too in-
direct to draw definite conclusions. The Big Bang is too long back in time.
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Fig. 1. What we know about the phase diagram of QCD from lattice calculations
(left) and from heavy-ion collisions (right).

You, thus, have to create systems close to the phase transition of QCD in
your laboratory. A broad variety of observables has been proposed to study
the properties of the quark-gluon plasma and of the QCD phase transition
in heavy-ion collisions. Yet, none of them has unambiguously explained the
available data. The proposed fluctuation signals for a conjectured critical
point [2, 3] have not yet been seen in heavy-ion collisions [4]. The systems
created in a heavy-ion collision are very small, inhomogeneous and expand
due to fast dynamics. The finite lifetime of the system was found to limit the
growth of the correlation length by critical slowing down [5]. Real nonequi-
librium dynamics might further diminish the critical phenomena but stim-
ulate interesting effects at the first order phase transition [6, 7]. The right
plot of Fig. 1 shows the phase diagram as seen from heavy-ion experiments
so far.

Third, you are creative and phenomenologically construct an effective
field theoretical model of QCD. Creativity is not unlimited as these mod-
els should give a good quantitative description of experimentally measured
quantities like cross-sections and cover qualitative aspects of the phase di-
agram, like chiral symmetry and/or confinement [8, 9]. There are indeed a
couple of models that meet these requirements and they can describe cer-
tain parameter regions of the phase diagram. These model studies strongly
suggest a first order phase transition at high baryonic densities and lower
temperatures. This line ends in a critical point. A pictorial view of the
phase diagram inspired by model studies is shown in Fig. 2.

In the following, we present results on a coupled model of the chiral phase
transition embedded in a fluid dynamic expansion of quarks [10,11]. In [12,
13,14] chiral fluid dynamic models have been extended by the selfconsistent
inclusion of dissipation and noise.
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Fig. 2. A pictorial view of the phase diagram of QCD inspired by model calcu-
lations, which strongly suggest a first order phase transition at higher baryonic
densities. In order to see the coexistence region of the first order phase transition,
the phase diagram is shown in the T–nB plane. The first order phase transition
line ends in a critical point.

2. Chiral fluid dynamics

Starting from the linear sigma model with constituent quarks [15] the
coupled dynamics of the order parameter of chiral symmetry, the sigma field,
and the fluid dynamic expansion of the quarks have been derived [12]. The
Langevin equation for the sigma mean-field reads

∂µ∂
µσ +

δVeff

δσ
+ η∂tσ = ξ . (1)

The effective potential to one-loop level is given by

Veff (σ, ~π, T ) = U (σ, ~π )− 2dqT
∫

d3p

(2π)3
ln
(

1 + exp
(
−E
T

))
, (2)

and the damping term is [12,16,17]

η =


g2 dq

π

(
1− 2nF

(
mσ
2

))
1
m2
σ

(
m2
σ

4 −m
2
q

)3/2
for mσ > 2mq = 2gσeq ,

2.2/fm for 2mq > mσ > 2mπ ,

0 for mσ < 2mπ, 2mq .

(3)
The stochastic field in the Langevin equation (1) has a vanishing expectation
value

〈ξ(t)〉ξ = 0 , (4)
and the noise correlation is given by the dissipation-fluctuation theorem〈

ξ(t)ξ
(
t′
)〉
ξ
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(mσ

2T

)
. (5)
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The pressure of the quarks is locally given by

p(σ, ~π, T ) = −Veff (σ, ~π, T ) + U (σ, ~π ) (6)

and the local energy density is obtained from the thermodynamic relation

e (σ, ~π, T ) = T
∂p (σ, ~π, T )

∂T
− p (σ, ~π, T ) . (7)

In the relativistic fluid dynamic equations we find a source term Sν allowing
for the energy dissipation from the system to the heat bath

∂µT
µν = Sν . (8)

3. Radial expansion profiles

The system is initialized in an ellipsoidal shape in transverse direction
at a maximal temperature of T = 160 MeV in the inner region. The sigma
field is initially in equilibrium with the quark fluid. The expansion of the
quark fluid cools the system through the phase transition. In Figs. 3 and 4
the radial profile of the sigma field is shown at different times for a scenario
with a first order phase transition and with a critical point respectively. The
corresponding radial temperature profiles are shown in Figs. 5 and 6.
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Fig. 3. The radial profile of the sigma field in a scenario with a first order phase
transition.

Initially, the sigma field is close to its high-temperature expectation
value σ ' 0 in the chirally restored phase. During cooling of the sys-
tem, the sigma field relaxes. This occurs faster in a critical point scenario,
since here T cp

c = 139.88 MeV, than for a first order phase transition where
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Fig. 4. The radial profile of the sigma field in a critical point scenario.
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Fig. 5. The radial temperature profile in a scenario with a first order phase transi-
tion.

T fopt
c = 123.27 MeV. Moreover, the damping coefficient in a first order phase

transition scenario is larger and thus the system is damped strongly into the
high-temperature minimum. Comparing Figs. 3 and 5 we see that t = 4.8 fm
the sigma field is supercooled in the inner region. Here, temperatures are
already below T fopt

c . At larger radii the sigma field relaxes. Due to the
dissipation during relaxation the fluid is reheated and thus the temperature
is higher at larger radii than in the inner region. For later times the sigma
field in the inner region also starts to relax and the temperature rises again.
In the inner region the temperature at t = 9.6 fm is much higher than it was
at earlier times between t ≈ 6.4 ∼ 8.0 fm. These two effects, supercooling
and reheating, are absent in a critical point scenario.
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Fig. 6. The radial temperature profile in a critical point scenario.
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