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In this paper, we briefly review the current understanding of the behav-
ior of the QCD equation of state throughout the phase diagram. Special
emphasis is given to regions of phenomenological interest, and a number
of important open questions as well as directions of ongoing research are
pointed out. These include in particular the region of low temperatures
and (moderately) high densities, where at the moment we have extremely
few first principles tools available.
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1. Introduction

Apart from being of obvious theoretical interest, the behavior of the
Equation of State (EoS) of QCD as a function of temperature T and baryon
chemical potential µB is of considerable phenomenological importance in
a variety of physical systems. Through Einstein’s equations, the high-
temperature and low-density EoS governed the expansion and cooling rates
of the universe when its age was of the order of a few tens of microseconds,
and through the expansion rate it thus had an effect on e.g. the decoupling
times of various dark matter candidates. In heavy ion physics, the success
of the hydrodynamic description of the collision relies on the availability of
accurate information on the energy density and pressure of the underlying
theory. And finally, the properties of compact stars — in fact, their entire
composition — are extremely sensitive to the EoS of cold and dense nuclear
and quark matter.

In this paper, we will review what is currently known about the EoS of
QCD in various parts of the µB–T phase diagram, covering both the confined
and deconfined regimes and extending from zero density all the way to zero
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temperature. Conceptually, the setup of the problem is extremely simple:
one takes the Euclidean functional integral corresponding to the partition
function (or grand potential) of the theory,

Ω(T, {µf}, {mf}) = −T log
∫
Dψ̄DψDAµe−

R β
0 dτ

R
d3xLQCD , (1)

LQCD = 1
4F

a
µνF

a
µν + ψ̄f (γµDµ +mf − µfγ0)ψf , (2)

evaluates it one way or another, and subsequently uses standard relations to
obtain predictions for a number of equilibrium thermodynamical quantities
ranging from the pressure to the quark number, entropy and energy densities

pV = −Ω , (3)
nfV = −∂µfΩ , (4)
sV = −∂TΩ , (5)
ε = −p+ Ts+ µfnf . (6)

The real challenge, of course, becomes how to choose the optimal method
for doing this in different parts of the phase diagram, and this question is
what we will be mostly concerned with. There is no one single method to
cover the entire µB–T plane, but as we will argue below, combining results
from various existing techniques provides us with a quantitative handle on
the behavior of the EoS almost everywhere.

To make the following discussion more transparent and physically intu-
itive, we choose to parametrize the temperature and baryon chemical poten-
tial by a radial and angular variable. These are defined by

ρ ≡
√
T 2 +

µ2
B

6π2
, θ ≡ arctan

µB√
6πT

, (7)

T = ρ cos θ , µB =
√

6πρ sin θ , (8)

where ρ is roughly proportional to the fourth root of the energy density of the
free theory, while the angle θ measures the deviation from the temperature
(zero density) axis.

The roles of the variables are clear: due to the running of the αs, the en-
ergy scale ρmeasures how strongly coupled the system is. Roughly speaking,
at ρ . 100 MeV we are deep in the confined phase of the theory, at 100 MeV
. ρ . 1 GeV the system resides in an intermediate region characterized by
a deconfinement phase transition (or crossover) and complicated dynamics,
and at ρ & 1 GeV, we enter a regime where a description in terms of weakly
interacting, deconfined quasiparticles becomes feasible. The angle θ, on the
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other hand, separates two phenomenologically interesting regions: the val-
ues θ . 1 are relevant for the physics of the early universe and heavy ion
collisions, while in the matter found inside neutron stars, we have to a very
good accuracy θ = π/2. Thus, while it may be theoretically interesting to
consider the EoS for other values of θ as well, most of our attention will in
what follows be divided between these two cases.

2. Small θ: from hadron gas to quark-gluon plasma

For baryon chemical potentials of at most the order of the temperature,
the two limits of low and high energy densities, respectively ρ . 100 MeV
and ρ & 1 GeV, are conceptually relatively simple. At low energies, we
are dealing with a dilute gas of hadrons that may be described in terms of
hadron resonance gas (HRG) models, while at high ρ, the system comprises
a (relatively) weakly coupled quark-gluon plasma that is amenable to treat-
ment via resummed perturbation theory. In the regime between these two
limits, one may attempt to gain qualitative understanding of the dynamics
of the system via various types of effective theories and models, but the
ultimate tool for quantitative information is clearly lattice QCD.

The success of the hadron resonance gas models, originally proposed in
Ref. [1], is based on confinement. At sufficiently low energy density, the sys-
tem comprises a dilute gas of hadrons, in which the strong interactions are
very efficiently confined inside these particles, making the system in practice
a free Stefan–Boltzmann gas. Raising the value of ρ, and thus introducing
more degrees of freedom, one must begin to take into account both the in-
teractions between the hadrons and the fraction of spatial volume occupied
by them, usually according to the Van der Waals prescription. Eventually,
these effects lead to sizable uncertainties in the results. Nevertheless, cur-
rent calculations, which typically include O(100) hadrons up to masses of
2–3 GeV, have been extended to close to the phase transition region, and
thus the results now have a finite overlap region with lattice simulations.
For details of these calculations as well as up-to-date results, see e.g. Ref. [2]
and references therein.

For ρ between roughly 100 MeV and several times the critical tempera-
ture Tc of the deconfinement transition, the method of choice for quantita-
tively reliable results is lattice QCD. For a long time, the main challenge in
lattice simulations was to reach physical quark masses and a wide enough
temperature range, but recent years have witnessed enormous progress in
both of these fronts [3, 4]. As demonstrated e.g. in Fig. 2 of Ref. [5], there
is now an impressive agreement between current lattice data and the pre-
dictions of hadron resonance gas models at temperatures slightly below Tc.
In addition, the discrepancies between the predictions of the different lat-
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tice groups regarding the EoS and the critical temperatures of the chiral
and deconfinement transitions have recently significantly decreased. At the
moment, the main limitation of the lattice approach to QCD thermodynam-
ics is clearly the sign problem, prohibiting simulations at baryon chemical
potentials much larger than the temperature. For recent progress in this
direction, see e.g. Ref. [6] and references therein.

Even higher temperatures and energy densities, ρ & 1 GeV, witness
lattice simulations becoming more and more expensive1 while perturbation
theory starts to work better and better. While the pure weak coupling ex-
pansion of the QCD pressure, at the moment worked out up to the partial
g6 term [8,9,10,11], shows relatively poor convergence, the situation can be
greatly improved using resummed perturbation theory. The most natural
platform for this is offered by dimensionally reduced effective theories, in
addition to which very promising results have recently been obtained using
Hard Thermal Loop resummed perturbation theory [12, 13]. The pertur-
bative approach has, in addition, the virtue of being easily generalizable to
finite chemical potentials [14], as even dimensional reduction has been shown
to lead to quantitatively reliable results as long as µB . T/g [15].

3. θ ≈ π/2: cold nuclear/quark matter

The region of the QCD phase diagram characterized by finite baryon
density and (negligibly) small temperatures is in many ways more problem-
atic than that of small θ. For one thing, lattice QCD is no longer available
as a computational method, and one must thus base one’s approach on a
combination of weak coupling techniques and model calculations. In addi-
tion, it appears that the exact phase structure of the theory has a highly
non-trivial form at small temperatures, and it is only at asymptotically large
chemical potentials that the true nature of the deconfined phase is known.
There, the pairing instability of the perturbative ground state drives quarks
on the Fermi surface to pair in a way that ties their color and flavor indices
together, resulting in the so-called Color Flavor Locked (CFL) superconduc-
tor. The questions of how far down the µB axis this phase extends to and
which of the several proposed candidate phases ultimately replaces it, are,
however, still open. Luckily, not all equilibrium thermodynamic quantities,
in particular the EoS, are extremely sensitive to these details.

Starting again from small energy densities and the nuclear matter phase,
we enter a corner of the phase diagram that is under relatively good quan-
titative control. This is not due to first principle calculations, however, but
rather to the abundance of experimental data on low energy nucleon–nucleon
scattering, enabling an accurate modeling of the dilute nuclear matter EoS.

1 See, however, Ref. [7] for lattice results extended to high temperatures.
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In close analogy to the HRG approach, the quantitative accuracy of these
models begins to suffer as one increases ρ and approaches the deconfinement
transition region. In the case of cold and dense nuclear matter, the primary
uncertainties in the EoS are due to the unknown composition of the matter
(the conjectured presence of e.g. hyperons or kaon condensation), and mi-
nor ones to the details of the model calculations such as the exact form of
the respective variational ansatz or the effect of neglecting the simultaneous
interactions of more than two nuclei. For further details of these computa-
tions as well as for references regarding the nuclear matter EoS, the reader
is asked to consult Refs. [16, 17,18].

In the case of asymptotically large energy densities, ρ � 1 GeV, the
physical ground state of QCD is a CFL superconductor. It is characterized
by a (perturbatively) exponentially small energy gap ∆ ∼ e−#/g, and it is
thus natural that the effects of the gap can be formally neglected in a weak
coupling expansion of the EoS. In any practical applications, e.g. when dis-
cussing compact stars, this is, however, certainly not good approximation,
and one should, in addition, pay close attention to quark mass threshold
crossings. Both of these effects have been included in the recent three-
loop perturbative computation of Ref. [19]. The results of this calculation
demonstrate that while the zero-temperature pressure does exhibit some-
what better convergence properties than the high-T one, the uncertainties
in the results become sizable when one approaches densities that might be
realized in nature.

It should not come as a surprise that in the θ ≈ π/2 case, the most
problematic region is by far that of intermediate densities, 100 MeV . ρ .
1 GeV. In this regime, neither the nuclear model approach nor perturbation
theory is applicable, but obtaining accurate information on the behavior
of the EoS is nevertheless crucial in order to understand the structure of
compact stars. Two very different lines of attack have been suggested to
overcome these difficulties. One may either trust one of the several models
that have been built to describe the relevant physics in this regime (usually
following the guidance of symmetry principles) [20], or interpolate between
the trusted EoSs of dilute nuclear and dense quark matter [19]. Recent
advances in compact star observations have, in addition, made it possible
to directly rule out sizable regions of their mass-radius plane. One day, this
may even lead to the solution of the inverse problem, i.e. predicting the
EoS of cold nuclear and quark matter solely from experimental data (see
e.g. Refs. [21, 22] for a discussion of this).
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