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We present a study of the heavy-flavor dynamics in nucleus—nucleus
collisions. The initial (hard) production of ¢ and b quarks is taken from
NLO pQCD predictions. The presence of a hot medium (a Quark-Gluon
Plasma described by hydrodynamics) affects the final spectra of open-charm
(beauty) hadrons and their decay electrons with respect to what found in
pp collisions. The propagation of ¢ and b quarks in the plasma is based
on a picture of multiple uncorrelated random collisions, described by a
relativistic Langevin equation. A microscopic evaluation of the transport
coefficients is provided within a pQCD approach (with proper resummation
of medium effects). Results for the final spectra of heavy-flavor hadrons
and decay-electrons are given, with particular emphasis on R4 and vs.
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1. Introduction

Heavy flavor spectra are an interesting probe of the medium formed in
heavy-ion collisions: ¢ and b quarks are produced in hard processes during
the crossing of the two nuclei and the QCD flavor conservation allows to
“tag” final-state charm and beauty hadrons, so that the color charge and
mass of the parent parton propagating in the plasma is known. The inter-
action between the heavy quarks and the medium leads to a modification
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of the final spectra with respect to the pp case. Different mechanisms and
approaches were proposed in the literature to account for such an effect:
e.g. medium-induced gluon-radiation [1,2], scattering mediated by resonant
states [3], calculations based on the Boltzmann equation [4]. As explained
at length in [5,6] we describe the heavy-quark dynamics through the rela-
tivistic Langevin equation. This amounts to assume that the heavy-quark
momentum, crossing the plasma, gets changed due to multiple uncorrelated
random collisions. For independent studies based on the Langevin equation
see for instance Refs. |7,8,9].

2. The relativistic Langevin equation

The relativistic Langevin equation |[10] is used to study the propagation
of ¢ and b quarks in the QGP. The variation of the heavy-quark momentum
in the time-interval At

Ap?

A; = o' + €, (2.1)

is given by the sum of a deterministic friction term and a stochastic noise
term &'(t), which is completely determined by its two-point temporal corre-
lator

(EWE(t))=b"(p)s (t—1') , with b7(p)=rr(p)p'p’+rr(p) (67 —ﬁizij ) -
2.2
The latter involves the transport coefficients k(p) = %<AAp:T> and k1,(p) =

Ap? . . .
< Ap tL> , representing the average transverse and longitudinal squared-momen-

tum acquired per unit time by the quark due to the collisions in the medium.

The transport coefficients rt 1, are evaluated according to the procedure
presented in [5]. We introduce an intermediate cutoff [t|* ~m?, (t=(P'—P)?)
separating hard and soft scatterings. The contribution of hard collisions
(|t]>[t]*) is evaluated through a kinetic pQCD calculation of the processes
Q(P)g;;; — Q(P')g;; and Q(P)g — Q(P')g. On the other hand, in soft
collisions (|t| < [t|*) the exchanged gluon feels the presence of the plasma.
A resummation of medium effects is thus required and this is provided by
the Hard Thermal Loop approximation. The final result is given by the
sum of the two contributions s /,(p) = n}%a/lf (p) + ﬁ%’/f'i (p) and its explicit
expression can be found in Ref. [5]. In Fig. 1 we display the behavior of
w1, for ¢ and b quarks. The sensitivity to the intermediate cutoff [¢[* is
quite small, supporting the validity of the approach.
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Fig.1. The ¢ (left panel) and b (right panel) momentum diffusion coefficients
wr/L(p) resulting from the sum of the soft and hard contributions. The sensi-
tivity to the intermediate cutoff [¢|* ~ m?% is very mild. The curves refer to the

temperature 7' = 400 MeV, with the coupling g evaluated at the scale p = (3/2)nT.

3. Heavy flavor in pp and heavy-ion collisions

The procedure to generate final-state heavy-flavor spectra can be factor-
ized into some independent steps. Details can be found in [5].

o Initial production of QQ pairs in hard pQCD processes. An initial
sample of ¢ and b quarks is generated using the POWHEG code [11],
which implements pQCD at NLO. In the AA case nuclear PDFs are
employed [12]. Heavy quarks are then distributed in the transverse
plane according to the nuclear overlap function dN/dx; ~Tap(x,y)=
Ta(z+b/2,y)Tp(x—0b/2,y) and given a kp-broadening depending on
the crossed thickness of nuclear matter.

e Langevin evolution in the fireball. In the AA case at the proper-time
7= V12— 22 =719 one starts following the stochastic Langevin dynamics
of the quarks in the plasma. The expansion of the background medium
is described by ideal /viscous hydrodynamics [13, 14, 15].

e Hadronization and decays. Heavy quarks are made hadronize (around
the critical energy density €. in the AA case) using Peterson fragmen-
tation functions [16] with branching fractions into hadrons taken from
Refs. [17,18]. Finally, each hadron is forced to decay into electrons
with PYTHIA [19], using updated tables of branching ratios [20)].
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4. Numerical results

Our predictions for the cross-sections of heavy-flavor electrons in pp col-
lisions at RHIC (y/s = 200 GeV) and LHC (y/s = 5.5 TeV) are given in
Fig. 2. PHENIX results are well reproduced. Going from RHIC to LHC one
observes a sizable increase of the cross-section, a hardening of the spectrum
and the growth of the relative contribution of electrons from b decays.
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Fig.2. Invariant differential cross-section of electrons [(eT + e7)/2|, from heavy-
flavor decay in pp collisions at /s = 200 GeV (left panel) and /s = 5.5 TeV (right
panel). The curves refer to electrons from ¢ or b quarks generated by POWHEG.
PHENIX data are extremely well reproduced.
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Fig.3. The R4 of heavy-flavor hadrons and decay-electrons in minimum-bias AA
collisions at RHIC (0-92% of the total hadronic cross-section, left panel) and LHC
at 5.5 TeV (0-90%, right panel) for viscous hydrodynamics.
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For AA collisions effects of the Langevin evolution were studied through
the nuclear modification factor R4 (pr)= (dN/dpt)44/(N)eon(dN/dpr)PP
and the elliptic flow coefficient vy (pr) = (cos(2¢)>pT Here, we display results
obtained using viscous hydrodynamics, for few representative cases among
the ones explored in [5]. In Fig. 3 we show our findings for the R44(pr) of
heavy-flavor hadrons and their decay-electrons at RHIC and LHC at 5.5 TeV.
A general agreement with PHENIX data |21] can be attained. Notice that
the higher temperatures reached at LHC lead to a larger quenching of the
spectra; however in the inclusive (e.+e¢p) result the effect is partially com-
pensated by the stronger weight acquired by the b contribution. In Fig. 4
the centrality dependence of R4 is displayed. The overall agreement with
PHENIX data looks satisfactory.
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Fig.4. The nuclear modification factor of heavy-flavor electrons at RHIC (a) and
LHC at 5.5 TeV (b) for viscous hydrodynamics (7o = 1 fm), obtained by integrating
the electron yields over the indicated momentum ranges, as a function of Npar¢. The

centrality dependence found by the PHENIX experiment [21] is nicely reproduced.
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Fig.5. (a) The minimum-bias anisotropy parameter vy for heavy-flavor electrons
at RHIC for viscous hydrodynamics. PHENIX data [21,22] are compared with the
outcomes of our calculations for electrons from ¢ and b quarks and their combina-
tion. (b) As in panel (a), but for LHC and two choices of 7.



658 A. BERAUDO ET AL.

In Fig. 5 we display our results for vo. Even assuming a very rapid
thermalization, our findings tend to underestimate the experimental data:
perturbative cross-sections favor small-angle scattering. However, in the
pr regime covered by the experimental measurements hadronization could
play an important role; coalescence with quarks of the medium, displaying
a sizable elliptic flow, could contribute to enhance the heavy-flavor v [3].

5. Conclusions

We studied the dynamics of ¢ and b quarks in the medium produced
in heavy-ion collisions. In our approach, based on the relativistic Langevin
equation, the quarks interact with the medium through multiple uncorre-
lated random momentum-exchanges, which would asymptotically drive them
to thermal equilibrium. The heavy-quark transport coefficients were evalu-
ated within a weak-coupling framework. Our procedure leads to results in
reasonable agreement with the available experimental data, which extend up
to quite high pr. This could even suggest to reconsider the role of collisional
energy-loss in the suppression of light-hadron spectra.
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