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In the context of the AdS/CFT holographic correspondence, the ther-
modynamics of the deconfined phase of four-dimensional gauge theories is
mapped to the thermodynamics of higher-dimensional black hole solutions
of a dual gravity model. Here, I review the basic ingredients of the cor-
respondence, and how one can construct simple semi-realistic holographic
models that give a quantitatively good description of Yang—Mills thermo-
dynamics.
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1. Introduction

In the past ten years, the holographic gauge/gravity duality conjec-
ture [1] has provided a new tool for the description of the nonperturbative
physics of strongly coupled gauge theories. In this context, the nonpertur-
bative gauge theory dynamics can be rephrased in terms of the dynamics
of a gravitational system in a higher-dimensional curved space-time (the
gravity dual description). Here, I will focus on the thermodynamics of the
system at finite temperature. The thermodynamics of the gauge theory is
mapped to the black hole thermodynamics in the gravity dual. One impor-
tant goal is to give a dual description of the phase transition (or cross-over)
to a high temperature, strongly coupled deconfined phase, such as the quark-
gluon plasma. As I will review, it is possible to construct phenomenological
holographic models which provide a quantitatively accurate description of
the deconfining transition and the thermodynamics of the high temperature
phase of the pure YangMills theory'.

* Presented at the Workshop “Excited QCD 2011”, Les Houches, France, February
20-25, 2011.

! This approach may be considered of the “third kind” (or creative), according to the
classification given in [2] of the possible ways to tackle non-perturbative aspects

of QCD.
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2. Lightning review of gauge/gravity duality

The gauge/gravity duality (or AdS/CFT correspondence) is the conjec-
tured equivalence between a gauge theory in D space-time dimensions and a
gravitational theory in a D+ p-dimensional curved space-time. The first and
best understood example is the conjectured equivalence [3| between large- N,
maximally Supersymmetric SU(N) Yang—Mills theory (N =4 SYM) in four
dimensions, and Type IIB string theory on the ten-dimensional space-time
given by the product of five-dimensional anti-de Sitter and a five-sphere
(AdSs5 x S°), whose metric is

g 2
ds?® = (r) (dr® + ndztda”) + (2d23 . (1)

The parameter ¢ sets the curvature of AdS and the radius of the S°. The
boundary of this space-time at r = 0 is conformal to the flat 4D Minkowski
space-time, parametrized by the coordinates z*, where the SYM theory is
defined?. The non-compact coordinate r is dual to the renormalization group
energy scale in the gauge theory, the UV being mapped to the r» ~ 0 region.
The fact that the metric (1) has the scaling isometry (r,z*) — (ar, azt)
reflects the exact conformal invariance of the N' = 4 SYM theory (hence the
term AdS/CFT correspondence). The usefulness of the duality lies in the
fact that, when the SYM coupling is large, string theory reduces to classical
supergravity (the AdS curvature is small in string and 10D Planck units).
This allows to compute strong coupling observables using classical general
relativity.

Many generalizations of these correspondence have been studied, involv-
ing less supersymmetric and non-conformal theories. In the following, I will
concentrate on the non-compact, 5D part of the bulk space-time, param-
etrized by (r,z*), and I will consider non-conformal situations that allow to
get closer to real QCD.

The ingredient that makes the correspondence a calculational tool is the
field/operator correspondence: to any field @(r, z*) propagating in the bulk,
one can associate a gauge-invariant operator O(z*) in the boundary field
theory®. The boundary value of @ is interpreted as an external source for O,
in the sense that the QFT action gets deformed by a term [ d*z®(z)O(z),
where @(x) ~ &(x,r = 0). Correlation functions for the operator O(z) can
be then calculated by using the GKPW prescription [4]

2 This is at the origin of the term holographic correspondence: the 10D bulk dynamics
is completely encoded in the lower-dimensional boundary field theory.

3 This applies in particular to the bulk metric, whose associated operator is the QFT
stress-tensor.
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ZQFT [@] = exp ngrav[@cl(w)] (2)
The left-hand side is the generating functional of correlation functions for
O(x), while the right-hand side contains the action Sgray that gives the
bulk dynamics of field @(z,7), evaluated on a solution of the bulk field
equations with fixed boundary condition specified by @(x) (thus both sides
are functionals of @(z)).

43C1_>43 ’

3. Holographic phase transitions

To go to finite temperature, the standard procedure is to pass to Eu-
clidean time, compactified with period = 1/T". Then, the relevant quantity
becomes the partition function Z(3), and the relation (2) becomes

Z(B) =exp[-BF|,  BF = Sgrav [95, "] | (3)

where now the r.h.s. is written in terms of the Euclidean action evaluated
on a solution of Einstein’s equations (ggb, @) that satisfies the appropriate
periodicity in time (here, I made explicit the bulk metric g, as part of the
bulk fields). The quantity F(T') is interpreted as the free energy of the
thermal equilibrium state in the QFT that corresponds to that solution.

It may happen that, for a given inverse temperature 3, there are several
classical solutions (ggbﬂ-, @) of the gravitational field equation. In this case,
the r.h.s. must be replaced, in the semiclassical limit, by a sum over saddle
points of the action

ZB)=e P e P2y BFA(T) = Sgrav [0, 9] - (4)

Each solution corresponds to a different thermal equilibrium state in the
dual QFT, and one can have first order phase transitions if it happens that
F1(T) — Fo(T') changes sign at some critical temperature 7. Also, from the
free energy we can compute other equilibrium quantities (such as entropy,
susceptibilities, etc.) by using standard thermodynamical formulae®.
Among the solutions on the gravity side, a particular role is played by
black hole solutions. They are thermal equilibrium solutions® that come with
a Hawking temperature Ty which can be naturally interpreted as the equi-
librium temperature on the field theory side. Moreover, they correspond, on
the field theory side, to a deconfined phase, as can be seen e.g. by comput-
ing holographically the v.e.v. of the Polyakov loop operator [5], and by the

4 The reason that this works, is ultimately insured by the fact that gravitational solu-
tions such as black holes are thermodynamical objects.

5 Black holes in asymptotically AdS space-times can be thermodynamically stable,
unlike asymptotically flat Schwarzschild black holes.
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fact that they display a spectrum of quasi-normal modes, analogous to what
one expects in a deconfined plasma. Thus, a deconfinement phase transition
appears in the holographic context as the transition between black hole so-
lutions that dominate at high temperature, and low temperature solutions
which do not contain black holes.

In the following subsections, I will describe several examples of such
phase transitions in theories of pure gravity; in Sec. 4, I will discuss the
phenomenological Einstein-dilaton model we studied in [6] and used in [7]
to match the thermodynamics of the Yang—Mills plasma.

3.1. AdS in Poincaré coordinates

Let us first consider the case of pure 5D gravity with a negative cosmo-
logical constant

12
Sgrav = —Mg/d5$\/§ <R+ £2> . (5)

We are interested in Euclidean solutions that preserve 3D spatial rotations
and translations: this is the symmetry of the field theory, the full 4D sym-
metry being broken by temperature. There are two kinds of such solutions:

e FEuclidean AdS in Poincaré coordinates, whose metric is
£ 2
ds® = () (dr? + dr?® + dz?) . (6)
r

At finite temperature this represents a thermal gas of the excitations
over the vacuum state, the latter being represented by the same metric
but with 5 — oo (7 decompactified).

e AdS black holes, with metric

ds? = <f>2 <}Z(i +f(r)d72+d92’2> . fr)=1—(aTr)*. (7)

The black hole horizon is related to the temperature T as T = (7ry,) !,
and the entropy per unit 3D volume is proportional to (¢/r,)3. This
solution is holographically dual to a deconfined fluid.

To know whether there is a phase transition between the two classes of
solutions, one could compute the free energy difference by evaluating the
action (5) on the AdS and black hole solutions at a given temperature.
However, there is a shortcut to avoid such calculation [6]. By integrating the
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thermodynamic relation between free energy and entropy, F = —9.5/9T, one
can show that in general, if the temperature is monotonic as a function of the
horizon position ry,, and the family of black hole solutions smoothly connects
to the solution without a horizon, (as in this case, by taking 7' — 0), then
the black hole free energy cannot change sign. Thus, in the case at hand,
there cannot be a first order phase transition at a finite ¢ (this can be seen
as a consequence of the exact conformal symmetry of the zero-temperature
theory). The theory always prefers to be in the black hole state, and the
free energy of this phase is that of a conformal gas, F = —cT*, where the
constant ¢ equals 3/4 of the value for a free relativistic gas.

3.2. Global AdS

To see an example of a theory that does display a phase transition,
consider now the same model, (5), but writing the AdS and metric in global
coordinates. The AdS and black hole solutions are now

2

2 2
ds®* = <f2> <f(?“)d7'2 + }i(?;) —|—€2d(2§> ) flr)=1+ %2 - G%wrél’
(8)

where G5 is the 5D Newton constant. For M = 0 this metric describes AdS
space in global coordinates. This is locally the same solution as (6), but
now the boundary r = 0 is conformal to S} x S3, rather than Sé x R3. This
means that the dual field theory is still ' =4 SYM, but living on a spatial
3-sphere® of radius ¢, rather than in flat space.

The introduction of a scale (the 3-sphere radius) allows the emergence
of a deconfining phase transition. In fact, now the relation between temper-
ature and horizon position is not one-to-one, as we have

1 Th
T(ry) = — .
(rn) ™ + 2702

9)

The above equation shows that there are no black holes below a certain
minimal temperature Ty, and for T' > Ty, there are always two black
holes, with different horizon radius (thus different entropy and free energy).
By the same general argument mentioned in the previous subsections, it
follows that in such a situation one does find a first order phase transition
when the temperature is a non-monotonic function of ry, with a critical
temperature T, > Tin. One can check this by explicit calculation of the
free energy, as was done originally by Hawking and Page [8]. Also, this is
indeed the expected behavior of N' =4 SYM on a S3.

6 Unlike the R® counterpart, at 7' = 0 this theory is in fact confining, for topological
reasons.
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3.3. Hard wall AdS/QCD

In the previous example, we saw that introducing a scale in the theory
(in this case, changing the geometry of space) can lead to a phase transition.
One may ask whether we can get a phase transitions, when the gauge theory
side is in flat space. To achieve this, we must find another way to introduce
a scale in the theory.

The simplest way to do this while keeping a flat spatial geometry, is
to consider what is called the AdS/QCD hard wall model [9]. Here the
metric is again AdS in Poincaré coordinates, (6), but this time we restrict
the range of 7 to the interval (0, r1g). In other words, the scale is introduced
by cutting-off the bulk in the IR. This makes the theory confining at T' = 0.

At finite T', no static black hole solutions can be found for r, > rg (or
for T < Tyin = (7rr)~!) . So black holes have a minimum temperature,
as in the global AdS case. For T' > Tp,in (mh < r1Rr), one still finds a single
black hole (whose metric is exactly the same as (7), with r, < rg.).

A direct calculation” of the black hole free energy [10] shows that the
latter takes the form F = Fy — ¢T*, where c is the same constant as for
Poincaré AdS, and Fy Tﬁlin. The additive term comes from an explicit
contribution in the IR. This means that we have a first-order phase transition
at T. = (Fo/c)Y/™.

Although interesting, there is a number of drawbacks in this model: (1)
the cut-off is introduced by hand, and not dynamically; (2) the thermody-
namics is still too close to that of a conformal field theory (e.g. the entropy
density is ~ constant x T3), thus not a good match for lattice Yang—Mills
theory; (3) the existence of the phase transition depends crucially on the IR
boundary conditions. If those are modified, the transition may disappear.

We will see in the next section how to construct holographic models that
are immune to these problems.

4. Phase transitions in 5D Einstein-dilaton gravity

From the previous sections we have learned that to have a first order
phase transition, the theory must have an infrared scale. But in order to
get closer to the thermodynamics of QCD (more simply Yang-Mills theory)
in flat space, we need to complicate the model beyond pure gravity. This is
to be expected, since 4D YM contains at least another dimension 4 gauge-
invariant operator, namely TrF?, beyond the stress tensor. This means that
the holographic dual should have at least one scalar field which couples to
this operator. Moreover, a non-trivial profile for this scalar field will break

" Since the black holes do not connect smoothly to the zero-temperature situation, the
argument based on black hole thermodynamics does not apply here.
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scale-invariance, and, in fact, it should correspond holographically to the
Yang—Mills coupling constant, whose running breaks scale invariance in the
gauge theory already at the perturbative level.

If we want to keep the model minimal, we are led to consider the following
5D action for gravity coupled to a scalar field®

S = —Mg/d% [R—3(00)*+ V()] . (10)

As shown in [12], in such a theory one can naturally incorporate the holo-
graphic realisation of asymptotic freedom and confinement, by choosing
V(®) appropriately.

At finite temperature, the general solutions of the coupled Einstein-scalar
field equations, preserving the 3D spatial Euclidean symmetry are of two
types (up to diffeomorphisms):

e the thermal gas solution,
ds® = bo(r) (dr® + dr* + di®) ,  D(r,at) = Py(r), (11)
which corresponds to a thermally excited confined phase;

e the black hole solutions,

dr?
fr)

with f(r) such that f(r,) = 0, which correspond to a deconfined phase.

dsQ:b(r)( +f(r)d72+da?2), S(r,a") = d(r), (12)

We demand that in the UV, both types of metric become equal, and are
asymptotically AdS, i.e.

b(r) ~bo(r) — £/r, f(r)y—1, r—0. (13)

This is guaranteed if we demand that V(®) has a regular asymptotic ex-
pansion near e® ~ 0, i.e. V ~ Vo + Vie? 4+ ... for & — —oo. In this case,
& — —oo maps to the high energy regime. The asymptotic AdS length ¢ is
then given by ¢ = 1/12/V{y. The non-trivial potential implies a departure of
the metric from AdS, thus a breaking of scale invariance (which is however

recovered in the UV, as in QCD).

8 For a review of the holographic properties of these models, see [11].The non-canonical
normalisation of the scalar kinetic term is a matter of convention.
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The nonperturbative behavior, including the presence of a deconfining
phase transition, is determined instead by the form of the potential at large
&, i.e. in the IR. The most interesting case consists of potentials V' (®) that
for large @ behave as

V() ~ ploml/aeh/3e (14)

It turns out [12] the zero-temperature theory is confining if and only if
a > 1. Remarkably, as shown in [6], the phase diagram of black hole so-
lutions exhibits qualitatively different behavior according precisely to the
same criterion:

e If @ < 1 there is a single black hole for any temperature, and T'(ry)
is a monotonic function. The situation is like in Poincaré-AdS, and
there is no phase transition.

e If o > 1 there are two black hole solutions above a (non-zero) minimum
temperature Tinin, and none below. The situation is like in AdS in
global coordinates: one finds a Hawking—Page-like phase transition at
a finite T, > T, but this time the spatial geometry is flat?.

Thus, in this class of models, we have established that confinement at
zero temperature is always associated with a deconfining first order phase
transition. Moreover, the thermodynamics at high temperature reduces to
that of AdS black holes, due to the form of the metric in the UV. Thus
these models have all the qualitative thermodynamic feature to interpo-
late between the region close to the deconfining transition and the correct
high-temperature regime. This agreement can be made quantitative by an
appropriate choice of the potential V(&) [7].

5. Final remarks

The holographic setups I discussed here are examples of phenomenolog-
ical holographic models: they are designed to capture some features of 4D
QCD, while staying reasonably simple and calculable. On the other hand,
to truly describe QCD holographically, one should need a full fledged string
theory, not limited to just a 2-derivative action. The reason is that there
is a single scale in QCD, thus in the holographic dual we cannot expect
the massive string excitations to be parametrically heavier (thus decoupled)
from the lowest lying gravity states.

In this respect, the models described here should be thought of effective
models that provide an alternative approach to non-perturbative physics,
and contain some adjustable quantities (e.g. the potential V(®) in the

9 In the limiting @ = 1 case there is a single black hole solution above Thin, but the
transition is still present.
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Einstein-scalar models) to be fixed phenomenologically. If we take this point
of view, the fact that some of these models reproduce e.g. the Yang—Mills
thermodynamics, is not really the point: lattice methods can already achieve
the same. Rather, what is interesting is that, once a reasonably realistic
holographic model has been developed, it can be used to describe or predict
regimes which are out of the reach of other methods. The most important
extension is to hydrodynamics and, more generally, out of equilibrium prop-
erties of the deconfined phase, which are very hard to describe on the lattice,
but to which the holographic approach is easily applicable.
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