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1. Introduction

One of the most intriguing questions of the strong interaction physics is
a possibility for existence of the chirally symmetric matter with confinement
at low temperatures and large densities. It is quite possible that a confining
mode persists up to a very dense nuclear matter. Here, by a matter with
confinement, we imply a matter with only the color singlet excitation modes
of hadronic type, where uncorrelated colored excitation are not possible. In
the large Nc limit confinement survives in a matter at low temperatures
up to arbitrary large density, because the quark–antiquark loops as well
as the quark–quark hole loops are suppressed at large Nc. Nothing can
screen a confining gluonic field and a gluodynamics in a medium is the same
as in a vacuum. In this case it is possible to define a quarkyonic matter
as a very dense nuclear matter where some bulk properties, e.g., pressure,
are determined by the quark Fermi surface (like for a Fermi gas), while
uncorrelated single quark excitations are not allowed [1]. We do not know
how to rigorously define a confining mode in a matter at Nc = 3, because
there is no strict order parameter for confinement. So we will imply under
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confining matter a matter with the color singlet excitation modes. We will
also assume that such a confining matter exists in the real Nc = 3 world up
to very large densities1.

What happens with chiral symmetry breaking in a very dense cold matter
with confinement? Is it possible to have a chiral symmetry restoration phase
transition in a mode with confinement both below and above the phase
transition?

If the chiral restoration phase transition exists in a system with confine-
ment, then the origin of mass of the confining strongly interacting matter
above the phase transition is not related at all with the chiral symmetry
breaking. Such a possibility was not considered in the past on the a priori
grounds: It was believed that a hadron mass generation is necessarily con-
nected with the chiral symmetry breaking in a vacuum and that a hadron
mass in the light quark sector is at least mostly directly related to the quark
condensate of a vacuum. Indeed, the ’t Hooft anomaly matching condi-
tions [3] require that at zero density and temperature in a confining mode
there must appear a Goldstone mode related to breaking of chiral symme-
try. However, the anomaly matching conditions can be trivially satisfied
in a two flavor nuclear matter built with chirally symmetric baryons (i.e.,
without any Goldstone mode associated with spontaneous breaking of chiral
symmetry). The Casher’s argument, claiming that in a confining mode the
quark Green function must necessarily contain a chiral symmetry breaking
part [4] is not general enough and can be easily bypassed [5]. At last, the ef-
fective restoration of chiral symmetry in highly excited hadrons [6], if finally
established, will imply that the mass generation mechanism of these hadrons
is not related to the chiral symmetry breaking in a vacuum. Summarizing,
today there are no a priori arguments that would rule out a possibility for a
confining but chirally symmetric dense and cold strongly interacting matter.

2. Confining but chirally symmetric liquid phase

In the large Nc limit nucleons are infinitely heavy, a nuclear matter is
in a crystal phase where translational and rotational invariances are sponta-
neously broken. In this situation all possible chiral order parameters cannot
simultaneously average to zero and if chiral symmetry is broken locally, it
is also broken in average [7]. However, we do know that in the real Nc = 3
world a nuclear matter is a liquid with manifest translational and rotational
invariances. Then, it is not unreasonable to assume that a dense (and a
superdense) Nc = 3 baryonic matter with confinement (i.e., by definition

1 It is shown on the lattice for the Nc = 2 QCD that at low temperatures confinement
persists up to densities of the order of 100 times nuclear matter density [2]. It is quite
natural then to assume that for the Nc = 3 QCD confinement will survive even for
essentially larger densities.
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a quarkyonic matter) is also in a liquid phase. Given this assumption, one
can ask a question whether a chiral restoration phase transition is possible
or not in such a matter. If possible, then by what mechanism?

We cannot answer this question from first principles. What can be done,
however, is to construct a model. If demonstrated within such a model,
this scenario could also be realized in QCD and further theoretical efforts
to clarify this interesting questions would be called for. A minimal set of
requirements for such a model is that it must be manifestly confining, chirally
symmetric and provide dynamical breaking of chiral symmetry in a vacuum.
This model must admit solutions for hadrons with nonzero mass as bound
states of quarks both in the Wigner–Weyl and Nambu–Goldstone modes of
chiral symmetry. Such program has been performed in Refs. [5, 8, 9], where
it was explicitly demonstrated that a confining chirally symmetric liquid
phase at low temperature can indeed be obtained at least within a model
that meets all requirements above.

3. The model

It is assumed within the model that the only interquark interaction is a
linear instantaneous potential of Coulomb type. Then the SU(2)L×SU(2)R×
U(1)A ×U(1)V symmetric Hamiltonian is

Ĥ =
∫
d3xψ̄ (~x, t)

(
−i~γ · ~5

)
ψ (~x, t)

+1
2

∫
d3xd3y Jaµ (~x, t)Kab

µν (~x− ~y ) Jbν (~y, t) , (1)

where Jaµ(~x, t) = ψ̄(~x, t)γµ λ
a

2 ψ(~x, t) and the interaction is assumed to be

Kab
µν (~x− ~y ) = gµ0gν0δ

abV (|~x− ~y |) ;
λaλa

4
V (r) = σr , (2)

with a, b being color indices. This model was intensively used in the past
to study chiral symmetry breaking, chiral properties of hadrons, etc., [10].
The model can be considered as a straightforward 3 + 1 dim generalization
of the 1 + 1 dim ’t Hooft model [11]. An important aspect of this 3 + 1 dim
model is that it manifestly exhibits effective restoration of chiral symmetry
in hadrons with large spin J [12].

The self-energy of quarks in a vacuum

Σ (~p ) = Ap +
(
~γ~̂p
)

(Bp − p) (3)

consists of the Lorentz-scalar chiral symmetry breaking part Ap and the
chirally symmetric part (~γ~̂p)(Bp − p). The unknown functions Ap and Bp
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can be obtained from the gap equation. All color singlet quantities, like
quark condensate, hadron masses are finite and well defined. In contrast, all
color non-singlet quantities, like a single quark energy, are infinite. It is a
manifestation of confinement.

We want to address chiral symmetry and confining properties of a dense
matter at T = 0. We treat the system in a mean field approximation and
assume a simple valence quark distribution function, see Fig. 1. In reality
valence quarks near the Fermi surface interact and cluster into the color
singlet baryons. Then a rigid quark Fermi surface in Fig. 1 is diffused. Here,
we ignore these effects2.

1

PP
f

Fig. 1. Valence quark distribution.

In a dense matter at T = 0 the most important physics that leads to
restoration of chiral symmetry is the Pauli blocking by valence quarks of the
positive energy levels required for the very existence of the quark condensate.
This is similar to the chiral restoration in the Nambu and Jona-Lasinio
model [14]. At sufficiently large Fermi momentum the gap equation does not
admit a nontrivial solution with broken chiral symmetry. Consequently, the
chiral symmetry breaking Lorentz scalar part Ap of the quark self-energy
vanishes and the chiral symmetry gets restored, see Fig. 2. However, the
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Fig. 2. Quark condensate in units of σ3/2 as a function of the Fermi momentum,
which is units of

√
σ.

2 A reasonable diffusion of the quark Fermi surface does not lead to qualitative modi-
fications of results [13].
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chirally symmetric part of the quark self-energy does not vanish and is still
infrared divergent, like in vacuum. This means that even with restored chiral
symmetry a single quark energy is infinite and such a quark is confined. This
infrared divergence cancels exactly in all color singlet hadronic modes that
remain finite and well defined.

In this respect, the model is radically different from the non-confining
NJL model. In the latter a dense matter is a Fermi gas of free quarks. In
the Nambu–Goldstone mode these quarks are massive. In the Wigner–Weyl
mode they are massless. In our case physical degrees of freedom, that can
be excited, are color singlet hadrons. In the Wigner–Weyl mode these are
the chirally symmetric hadrons.

Given a quark Green function from the gap equation, one can solve the
Bethe–Salpeter equation to obtain the color singlet mesons. A spectrum of
all possible quark–antiquark mesons below and above the chiral restoration
phase transition is shown in Fig. 3 and 4. Obviously, the chiral symmetry is
manifestly broken in Fig. 3, while in Fig. 4 the hadrons fall into all possible
chiral multiplets. Technically, it is more difficult to solve the model for
baryons, but in principle it can be done.
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Fig. 3. Spectra for pf = 0.05
√
σ. For J = 0 only the two ( 1

2 ,
1
2 ) multiplets are

present (left two panels). For J > 0 there are also the (0, 0) and (0, 1) ⊕ (1, 0)
multiplets. In the remaining four panels we show all multiplets for J = 2. Masses
are in units of

√
σ. Meson quantum numbers are I, JPC.
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Fig. 4. As Fig. 3 but for Fermi momentum pf = 0.2
√
σ.
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