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The study of the O(N) model at nonzero temperature is presented
applying the auxiliary field method, which allows to obtain a continuous
transformation between the linear and the nonlinear version of the model.
In the case of explicitly broken chiral symmetry the order of the chiral
phase transition changes from crossover to first order as the vacuum mass
of the σ particle increases. In the chiral limit one observes a first order
phase transition and the Goldstone’s theorem is fulfilled.
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1. Introduction

Scalar models with orthogonal symmetry are applied in many areas of
physics, like quantum dots and high-temperature superconductivity. In three
spatial dimensions no analytical solution exists, therefore, it is instructive
to compare different many-body approximation schemes to estimate their
physical relevance. In the literature the optimized perturbation theory [1],
the 2PI formalism [2, 3], and the 1/N expansion [4, 5, 6, 7] have been used
several times to examine the thermodynamical behavior of the O(N) model.

In this work we study the thermodynamics of the O(N) model by in-
troducing an auxiliary field. To calculate the effective potential, the masses
and the condensate at nonzero T we apply the so-called two-particle irre-
ducible (2PI) or Cornwall–Jackiw–Tomboulis (CJT) formalism [8, 9] in the
double-bubble approximation. Within the auxiliary field method the nonlin-
ear version of the model is given by a mathematically well-defined limiting
process of the linear O(N) model. We find that the gap equations for the
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order parameter and the masses of σ and π quantitatively differ from the
standard treatment of the O(N) model without the auxiliary field. This
paper is based on the results of Ref. [10].

2. The O(N) model

The generating functional at finite temperature of the linear O(N) model
is given by

ZL[ε, h] = N

∫
DαDΦe

R β
0 dτ

R
V d

3xLσ-α , (1)

Lσ-α =
1
2
∂µΦ

t∂µΦ− U(Φ, α) , U(Φ, α) =
i

2
α
(
Φ2 − υ2

0

)
+
ε

2
α2 − hσ .

Here Φt = (σ, π1...πN ); α is an auxiliary field serving as a Lagrange multi-
plier. By integrating it out we obtain

ZL[ε, h] =
∫
DΦe

R β
0 dτ

R
V d

3x
h

1
2
∂µΦt∂µΦ− 1

2Nε(Φ2−υ2
0)

2
+hσ

i
. (2)

The tree-level potential exhibits now the typical “Mexican hat” shape, where
1/ε is the coupling constant, h the parameter for explicit symmetry breaking,
and υ0 is the vacuum expectation value (v.e.v.). The advantage of the
auxiliary field representation of the linear version of the model, Eq. (2), is
that by taking the limit ε→ 0 one naturally recovers the nonlinear version of
the model. Note, the limit ε→ 0 corresponds to an infinitely large coupling
constant. In the nonlinear case the dynamics of the fields is constrained on
the chiral circle, defined by the condition Φ2 = υ2

0, which is represented by
a δ-function

ZNL[h] = lim
ε→0+

ZL[ε, h] =
∫
DΦδ

(
Φ2 − υ2

0

)
e

R β
0 dτ

R
V d

3x( 1
2
∂µΦt∂µΦ+hσ) . (3)

Here we have used the mathematically well-defined (i.e., convergent) repre-
sentation of the functional δ-function

δ
(
Φ2 − υ2

0

)
= lim

ε→0+
N

∫
Dα e−

R 1/T
0 dτ

R
V d

3x [ i2α(Φ2−υ2
0)+Nε

8
α2] . (4)

In some previous studies of the nonlinear O(N) model [5,6] the ε-dependence
of the δ-function was not properly handled, since the ε-dependent term, ε α2,
was neglected. This is, however, not correct, since this term is essential
to construct the link between the linear and the nonlinear versions of the
model. Besides, an integration over the auxiliary field does not give the
correct potential of the linear model when this term is absent.
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3. The effective potential and gap equations

The effective potential within the CJT formalism is given by

V = U(φ) +
1
2

∫
k

[
lnG−1(k) +D−1(k;φ)G(k)− 1

]
+ V2(φ,G) . (5)

Here U(φ) is the tree-level potential, D(k;φ) the tree-level propagator in mo-
mentum space, G(k) the full propagator in momentum space, and V2(φ,G)
contains all two-particle irreducible diagrams. In our case the tree-level po-
tential is given by

U = − i
2
(α0+α)

(
σ2 + π2

i + 2σφ + φ2 − υ2
0

)
−Nε

8
(α0+α)2+h(φ+σ) , (6)

where the fields σ and α have been shifted around their nonvanishing vacuum
expectation values, σ → φ+σ and α→ α0+α. These shifts generate a bilin-
ear mixing term, iασφ, rendering the mass matrix nondiagonal in the fields σ
and α. Performing a further shift of the auxiliary field α, α→ α−4iφσ/Nε,
this unphysical mixing can be eliminated. The resulting Lagrangian contains
no 4-point vertices

Lσ-α =
1
2
∂µσ∂

µσ +
1
2
∂µπi∂

µπi −
σ2

2

(
iα0 + 4

φ2

Nε

)
− π2

i

2
(iα0)

−1
2
Nε

4
α2 − i

2
α
(
σ2 + π2

i

)
− 2 φ
Nε

σ
(
σ2 + π2

i

)
− i

2
α0

(
φ2 − υ2

0

)
− Nε

8
α2

0 + hφ . (7)

Therefore, if we restrict ourselves to the so-called double-bubble approxima-
tion where the self-energy of the particles is independent of momentum, the
contribution of V2 to the CJT effective potential vanishes.

The gap equations are derived by minimizing the effective potential and
read

h = φ

[
M2
π(ε, h) +

4
Nε

∫
k

Gσ(k)

]
,

M2
σ (ε, h) = M2

π (ε, h) +
4φ2

Nε
,

M2
π (ε, h) =

2
Nε

[
φ2 − υ2

0 +
∫
k

Gσ(k) + (N − 1)
∫
k

Gπ(k)

]
. (8)
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4. Results

The numerical results are presented for N = 4 corresponding to a system
of three pions and their chiral partner, the σ particle. We apply the trivial
renormalisation (TR), where the divergent vacuum contributions of the tad-
pole diagrams is set to zero.

In the linear version of the model and for explicitly broken chiral sym-
metry, the order of the chiral phase transition depends sensitively on the
vacuum mass of the σ particle, mσ, see Fig. 1. Increasing mσ the phase
transition changes from crossover to first order. The identification of the
chiral partner of the pion is under debate, e.g. Refs. [11].
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Fig. 1. The pion mass, the sigma mass and the condensate as a function of T in the
O(4) linear model in the case of explicitly broken symmetry for different values
of mσ.

Performing the nonlinear limit, ε → 0, one observes a first order phase
transition for explicitly broken chiral symmetry with the critical tempera-
ture Tc = 178.6 MeV, see Fig. 2. In the chiral limit, the phase transition

0

100

200

300

400

500

600

700

800

M
[M

e
V

]

0 50 100 150 200 250 300 350 400

T [MeV]

0

10

20

30

40

50

60

70

80

90

100

[M
e
V

]

0 50 100 150 200 250 300 350 400 450

T [MeV]

Fig. 2. The pion mass and the condensate as a function of T in the O(4) nonlinear
model in the case of explicitly broken symmetry for mσ → ∞ (in practice mσ =
250 MeV is used).
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is again of first order, see Fig. 3, with Tc =
√

12/N fπ =
√

3 fπ, where
fπ = 92.4 MeV is the pion decay constant. In the phase where the symme-
try is spontaneously broken the pions are massless. Thus the Goldstone’s
theorem is respected. Note that from the second equation in (8) the fol-
lowing relation 1/ε =

(
m2
σ −m2

π

)
/φ2 can be obtained. Thus, the nonlinear

limit is equivalent to sending mσ to infinity.
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Fig. 3. The pion mass and the condensate as a function of T in the chiral limit for
mσ →∞ (in practice mσ = 250 MeV is used).

5. Conclusions

The study of the O(N) model at nonzero T was presented using the aux-
iliary field method to construct a mathematically well defined link between
the linear and nonlinear versions of the model. To derive the thermodynamic
quantities like the effective potential, the temperature dependent masses and
the condensate we applied the CJT formalism in the double-bubble approx-
imation. Although qualitatively similar to the standard double-bubble ap-
proximation in the treatment without auxiliary field, the gap equations are
quantitatively different and lead to different results for the order parameter
and the masses of the particles as a function of T .

A natural next step is to include sunset-type diagrams in the 2PI ef-
fective action, which lead to nonzero imaginary parts for the self-energy of
the quasiparticles and, in turn, to a nonzero decay width. Another project
is to extend the studies to nonzero chemical potentials [7] or to include
additional scalar states, since the nature of their constituency is quite un-
clear [12]. Besides, the application of the auxiliary field method should also
be instructive for more complicated systems incorporating additional vector
and axial vector mesonic degrees of freedom [13].
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