TWO-LOOP RESUMMATION IN (FRACTIONAL) ANALYTIC PERTURBATION THEORY*

Alexander P. Bakulev
Bogoliubov Laboratory of Theoretical Physics, JINR
Dubna 141980, Russia
bakulev@theor.jinr.ru
(Received July 27, 2011)

We show how to resum perturbative series in both the one- and two-loop fractional analytic perturbation theory.

DOI:10.5506/APhysPolBSupp.4.739
PACS numbers: $12.38 . \mathrm{Cy}, 14.80 . \mathrm{Bn}, 12.38 . \mathrm{Bx}, 11.10 . \mathrm{Hi}$
In my report I described the generalization of the Analytic Perturbation Theory (APT) approach for QCD observables, initiated in [1, 2, 3], to fractional powers of coupling - the so-called Fractional APT (FAPT) [4, 5]. The basic aspects of FAPT are shortly summarized. After that, I discussed how to treat heavy-quark thresholds in FAPT [6] and then showed how to resum perturbative series in both the one-loop and two-loop (F)APT, provided that the generation function $P(t)$ of perturbative coefficients d_{n} is known $[7,6,8,9]$. As an application I considered the FAPT description of the Higgs boson decay $H^{0} \rightarrow b \bar{b}$ and of the vector-current Adler function. The main conclusion is: to achieve an accuracy of the order of 1% it is enough to take into account up to the third correction - in complete agreement with Kataev-Kim analysis in [10]. The d_{4} coefficient value calculated in [11] is needed only to estimate the generating function $P(t)$.

The full version of this report will be published in [12] (see also [13]). Here in Fig. 1 we show only the main result for the width $\Gamma_{H \rightarrow b \bar{b}}$: the width of the shaded strip takes into account the overall uncertainties due to the resummation procedure and the renormgroup-invariant b-quark mass, \hat{m}_{b}. The main source of a 5% reduction of the two-loop estimate as compared with the one-loop one is due to the reduction of the two-loop value of \hat{m}_{b}^{2}.

[^0]

Fig. 1. The two-loop width $\Gamma_{H \rightarrow b \bar{b}}^{\infty}$ is shown (the lower strip) as a function of the Higgs-boson mass M_{H} in the resummed FAPT. The upper strip shows the corresponding one-loop result.

This work was supported in part by the Russian Foundation for Fundamental Research (grant No. 11-01-00182), the BRFBR-JINR Cooperation Programme, contract No. F10D-001, and the Heisenberg-Landau Programme (2010-2011).

REFERENCES

[1] A.V. Radyushkin, JINR Rapid Commun. 78, 96 (1996) [JINR Preprint, E2-82-159, 26 Febr. 1982, arXiv:hep-ph/9907228v2].
[2] N.V. Krasnikov, A.A. Pivovarov, Phys. Lett. B116, 168 (1982).
[3] D.V. Shirkov, I.L. Solovtsov, JINR Rapid Commun. 76, 5 (1996); Phys. Rev. Lett. 79, 1209 (1997); Theor. Math. Phys. 150, 132 (2007).
[4] A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Rev. D72, 074014 (2005) [Erratum ibid. D72, 119908(E) (2005)]; Phys. Rev. D75, 056005 (2007) [Erratum ibid. D77, 079901(E) (2008)].
[5] A.P. Bakulev, A.I. Karanikas, N.G. Stefanis, Phys. Rev. D72, 074015 (2005).
[6] A.P. Bakulev, Phys. Elem. Part. Nucl. 40, 715 (2009).
[7] S.V. Mikhailov, J. High Energy Phys. 06, 009 (2007).
[8] A.P. Bakulev, S.V. Mikhailov, in Proc. Int. Seminar on Contemp. Probl. of Part. Phys., dedicated to the memory of I.L. Solovtsov, Dubna, Jan. 17-18, 2008., Eds. A.P. Bakulev et al., JINR, Dubna, 2008, pp. 119-133, arXiv:0803.3013v2 [hep-ph].
[9] A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, JHEP 06, 085 (2010).
[10] A.L. Kataev, V.T. Kim, PoS ACAT08, 004 (2009).
[11] P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 96, 012003 (2006).
[12] A.P. Bakulev, invited talk at the International Seminar "Quarks'2011", Kolomna, Russia, June 6-12, 2010, arXiv:1010.6174 [hep-ph].
[13] A.P. Bakulev, D.V. Shirkov, invited talk delivered by the first author at the $6^{\text {th }}$ Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, Belgrade, Sept. 15-23, 2010, arXiv:1102. 2380 [hep-ph].

[^0]: * Presented at the Workshop "Excited QCD 2011", Les Houches, France, February 20-25, 2011.

