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We analyze the survival probability of unstable particles in the context
of quantum field theory. After introducing the spectral function of reso-
nances, we show that deviations from the exponential decay law occur at
short times after the creation of the unstable particle. For hadronic decays,
these deviations are sizable and could lead to observable effects.
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1. Introduction

Deviations from the exponential decay law of unstable systems are a
natural consequence of the postulates of Quantum Mechanics [1,2,3]: for an
unstable state, whose average energy is finite, the survival probability for
short times after the “creation” of the state is slower than any exponential
decay law. In other terms, if we introduce an effective, time dependent decay
rate γ(t) = −1

t log(p(t)) one has that for t → 0+, γ(0+) = 0 while at large
times the standard exponential decay law, γ(t) ' Γ , is obtained. The initial
temporal window for which deviations from the exponential law take place
is usually very small: it is of the order of 10−15 s for electromagnetic atomic
decays [4]. This explains why these deviations have never been observed in
experiments before 1997 [5] when, for the first time, a cold atoms experiment
has reported the evidence of such deviations for bona fide unstable states
(tunneling of atoms out of a trap). Previously, in [6], deviations from the
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exponential law have been reported within Rabi oscillations. The short
time deviations from the exponential law open up the possibility of the so-
called Quantum Zeno effect [7, 3, 4]: by “observing” the system with pulsed
measurements at short times after its preparation, the effective decay rate is
reduced and eventually it vanishes for continuous measurements (Quantum
Zeno paradox). Also this prediction has been recently confirmed within cold
atoms experiments [8] and, moreover, the so-called Inverse Quantum Zeno
effect has also been observed: in this case the measuring apparatus leads to
a faster decay of the unstable state [9].

A natural question concerns the existence of deviations from the expo-
nential law also in the context of Relativistic Quantum Field Theory (RQFT)
which is the right theoretical frame for describing unstable particles. In
the perturbative approaches presented in [10] no (or very much suppressed)
short-time deviations from the exponential law, and thus no quantum Zeno
effect, were found within RQFT. Here and in Ref. [11] we reconsider the
issue of the survival probability in RQFT also by analyzing some subtleties
one faces when trying to define unstable particles, such as the problem of
“preparation of the system” and of the fields redefinition. We will not con-
sider here the case of the fundamental Lagrangian of the Standard model but
we limit the discussion to a toy model superrenormalizable Lagrangian. We
indeed find that deviations from the exponential law occur also in a genuine
RQFT context and we discuss possible implications for hadronic decays.

2. A model Lagrangian

The toy Lagrangian we use to investigate the survival probability of an
unstable scalar particle S decaying into two scalars ϕ is given by

L = 1
2 (∂µS)2 − 1

2M
2
0S

2 + 1
2 (∂µϕ)2 − 1

2m
2ϕ2 + gSϕ2 . (1)

The interaction term Lint =gSϕ2 is responsible for the decay process S→ϕϕ,
whose tree-level decay rate reads

Γ tl
Sϕϕ =

√
M2

0
4 −m2

8πM2
0

(√
2g
)2

. (2)

The “naive”, tree-level expression of the survival probability p(t) for the
resonance S created at t = 0 is ptl(t) = e−Γ

tl
Sϕϕt and the tree-level expression

of the mean life time is τtl = 1/Γ tl
Sϕϕ. Here we interpret our Lagrangian as

an effective model to describe the decays of hadrons; it is therefore quite
natural to introduce a cutoff Λ on the energy of the particles of the typical
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mass scale of strongly interacting particles i.e. Λ ∼ 1 GeV. To introduce the
cutoff in a more consistent way one has to insert a nonlocal interaction in
the Lagrangian [12]

L = 1
2 (∂µS)2 − 1

2M
2
0S

2 + 1
2 (∂µϕ)2 − 1

2m
2ϕ2 + Lint , (3)

Lint = gS(x)
∫

d4yϕ(x+ y/2)ϕ(x− y/2)Φ(y) , (4)

where Φ is a form factor whose Fourier transform, fΛ(q) =
∫
d4yΦ(y)e−iyq,

appears in the loop integrals and regularizes the divergences. (For nonlocal
Lagrangians see also Refs. [13] and refs. therein.) In this work we will
consider the case of a sharp cutoff and the case of a smooth form factor. An
intermediate step to obtain the survival probability is the computation of
the self energy which reads

Σ
(
x=
√
p2,m

)
=−i

∫
d4q

(2π)4
fΛ
(
q0,−→q

)2
[(q+p/2)2−m2+iε] [(−q+p/2)2−m2+iε]

(5)
and modifies the propagator ∆S of the unstable particle as usual

∆S(p2) =
[
p2 −M2

0 +
(√

2g
)2
Σ
(
p2
)

+ iε

]−1

. (6)

3. Spectral functions and survival probabilities

Similarly to the standard derivation within Quantum Mechanics, also
in RQFT, the survival probability can be obtained by projecting the initial
unstable state onto the energy eigenstates. In turn, this corresponds to
the calculation of the spectral function dS(x) of the scalar field S which is
proportional to the imaginary part of the propagator

dS

(
x =

√
p2
)

=
2x
π

∣∣∣lim
ε→0

Im
[
∆S

(
p2
)]∣∣∣ . (7)

The quantity dS(x)dx represents the probability that, in its rest frame, the
state S has a mass between x and x + dx. It is correctly normalized for
each g,

∫∞
0 dS(x)dx = 1 and reproduces the limit dS(x) = δ(x −M0) for

g → 0 [14, 12]. Notice that there are situations in which the the spectral
function can be directly pinned down by data because the the background is
small and well understood: the decay φ→ γπ0π0 through the intermediate
a0(980) and f0(980) mesons, the similar decay of the j/ψ charmonium, or
the hadronic decay of the τ lepton into νππ, dominated by the ρ meson for
an invariant ππ mass close to ρ mass (e.g. [15]).
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The probability amplitude a(t) and the survival probability p(t) can be
then expressed as

a(t) =

+∞∫
−∞

dx dS(x)e−ixtp(t) = |a(t)|2 . (8)

The condition p(0) = 1 is fulfilled in virtue of the normalization of dS(x).
Let us now study the first derivative of p(t). We obtain that p′(t = 0) = 0

as a consequence of the fact that the integral
∫∞
0 x dS(x)dx is finite and

real (it is the mean mass 〈M〉, a reasonable definition for the mass of a
resonance [12]). This, in turn, implies that the function γ(t) = −1

t ln p(t)
vanishes for t→ 0+

lim
t→0+

γ(t) = − lim
t→0+

p′(t)
p(t)

= 0 . (9)

We can, therefore, conclude that the Quantum Zeno effect is perfectly pos-
sible in the present RQFT context.

We show in Fig. 1 the survival probability for the case of a sharp cutoff
(solid line) a smooth form factor fΛ(q) = 1/(1 + (q/Λ)2) (thick gray line)
and the standard exponential decay law (dashed line), here Λ = 1.5 GeV,
M0 = 1 GeV, m = mπ and the tree-level mean life time τtl = 3.27 GeV−1

(this fixes g in the two cases). Also displayed are the differences between
the survival probability as calculated at one loop level and the tree-level
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Fig. 1. Survival probability as a function of time. The solid line corresponds to the
choice of a sharp cutoff, the thick gray line to a smooth form factor, the dashed line
to the exponential decay law and the dotted black and gray lines are the differences
between the survival probability as calculated from the spectral function and the
exponential decay law. The deviations from the exponential law are quite sizable
at short times.
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exponential decay law (dotted black and gray lines). Notice that the time
interval for which sizable deviations from the exponential decay law occur is
of the same order of magnitude of the mean life time of the particle. This is
an intriguing consequence of having strongly interacting particles and could,
in principle, lead to observable effects, for instance in heavy ions collisions
experiments. Moreover, the difference between the sharp and smooth cutoff
is very small: this fact ensures that our results depend only slightly from
the form of the cutoff function.

4. Discussion and conclusions

There is an important issue that must be considered in connection with
the measurability of these deviations, which also correspond to the measur-
ability of the spectral function.

First, we notice that for very broad resonances, for which the deviation
from the exponential law are strong, one should also consider the mecha-
nism by which these resonances are created as, for instance, the scattering
ϕϕ → S → ϕϕ [16]. One should introduce wave packets, with proper ini-
tial conditions, which substantially overlap at t = 0. In the framework of
plane waves, the full state of the system can be expressed in terms of the
eigenstates of the Hamiltonian H0

|s(t)〉 =
∑
k

ck(t) |ϕkϕ−k〉+ cS(t) |S〉 . (10)

The coefficient cS(t) is vanishingly small for t � 0 and only for t ' 0
it becomes significant. If it were possible to tune the starting conditions
in such a way that cS(0) = 1, we would have |s(t = 0)〉 = |S〉 and the
survival probability of the resonance would be exactly the one presented in
the previous section. However, in general the state at t = 0 is a superposition

|s(0)〉 =
∑
k

ck(0) |ϕkϕ−k〉+ cS(0) |S〉 . (11)

Further evolution implies

e−iHt |s(0)〉 =
∑
k

ck(0)e−iHt |ϕkϕ−k〉+ cS(0)e−iHt |S〉

=
∑
k

ck(0)e−iHt |ϕkϕ−k〉+ cS(0) (a(t) |S〉+ |ϕϕ〉) .
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The amplitude a(t) enters in a more general expression but it is not clear
a priori if the deviations from the exponential decay law are smeared out,
in the final “measurement” of the decay products, or if they could provide
significant effects. A careful study would be needed. Moreover, we plan also
to investigate if the deviations from the exponential decay law could indeed
lead to observable effects also in Particle Physics experiments.

The work of G. P. is supported by the Deutsche Forschungsgemeinschaft
(DFG) under Grant No. PA 1780/2-1.
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