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In this work, we study both continuous models of evacuation based
on differential equations and discrete models based on cellular automata.
Our discrete model is a floor field model with additional rules of movement
(i.e. random movement, a form of pressure and enforced blocking of pedes-
trians). The continuous model is a variant of the Langevin equation. By
performing simulations of evacuation from rooms with similar geometries
we try to compare both approaches and find their strengths and weak-
nesses. In order to do that, we study evacuation times, relative evacuation
times and other variables. We find that evacuation times are comparable
but the results highly depend on geometry.
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1. Introduction

Whenever people gather in some place, be it an open or constrained
space, there is always a possibility that due to some unpredictable circum-
stances (like fire, terrorist threat or even without any tangible reason) they
will be forced to evacuate. Such situations are potentially very dangerous
and, as we could witness in many news reports recently, can lead to injuries
or even fatalities. Scientists recognised this problem and began to study
it using various mathematical tools available in their fields [1]. The goal
of such studies is to increase safety and our understanding of phenomena
occurring during evacuation.
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Mathematical models of pedestrian movement can be roughly divided
into two categories. The first category consists of continuous models in which
pedestrians are treated in a similar way to particles, interacting with each
other and with the surrounding environment through social forces [2,3,4,5,6].
The equations of motion have the form of the Langevin equations — that is,
differential equations with a stochastic component. Unlike these equations,
cellular automata models, the second category, are intrinsically discrete —
space is divided into cells, usually located on a rectangular grid, and time
is measured in evenly spaced time steps. Cellular automata models may
employ various kinds of random movement [7, 8], static and dynamic floor
fields [9, 10, 11] or pedestrians occupying more than one cell [12, 13].

In this work, we compare a variant of the continuous model [5] with
our discrete cellular automata model [14]. Scientists have always tried to
clearly define the relation between models based on cellular automata and
differential equations. While we do not intend to provide an answer to this
question, we believe that it is very interesting to see how (and if) the results
from both kinds of models are comparable and how close they can be brought
together.

2. Cellular automata based model

In this comparison, we used a variant of the cellular automata model
of pedestrian movement we introduced in [14], where we studied evacuation
on staircase-like geometries. The model is based on a simple floor field
combined with additional rules. The floor field (formally, an assignment of
real values to cells used by pedestrians as a metric which tells them how far
away they are from their destination) can be calculated with the following
algorithm [9]:

1. Mark all cells as inactive.

2. Assign value 1 to all destination cells (in our case — the cells the exits
are comprised of) and mark them as active. Assign the highest possible
floor field value to obstacle cells (e.g. walls, desks) and exclude them
from further processing.

3. For each active cell with floor field value w, assign value w+ 1.5 to its
diagonal inactive neighbours and value w+1 to horizontal and vertical
inactive neighbours. If this procedure leads to a conflict (two or more
cells try to assign a value to a common neighbour), use the smallest
floor field value as the final one.

4. Mark all active cells as processed. Mark all cells that were assigned a
value during the previous step as active.

5. Repeat from step 3 as long as there are active cells.
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Using this simple, iterative procedure we can create a floor field (similar to
the Manhattan metric) which takes into account the diagonal movement.
The properties of this floor field were discussed more broadly in [9].

A cell can be occupied by a single pedestrian. Each pedestrian in the
system is characterised by actual velocity v, desired velocity vd and accel-
eration a (v, vd, a ∈ N0). At the beginning of each time step a list of all
pedestrians is shuffled and used to determine the order in which they are
asynchronously updated. We use the following rules of movement:

1. A pedestrian adds acceleration a to his or her actual velocity v, which
cannot be higher than desired velocity vd. It corresponds to the as-
signment: v ← min{v + a, vd}.

2. The pedestrian tries to move v times consecutively, choosing the next
cell with probability:

• 1 − β (β ∈ [0, 1]) — a neighbouring cell with the smallest floor
field value (as long as this value is lower than the value of the cell
the pedestrian is currently standing on);
• β — a neighbouring cell with the smallest number of pedestrians

in the neighbourhood.

When there are two or more cells with the same smallest floor field
value (or number of pedestrians in the neighbourhood), one of them is
chosen at random. If the pedestrian becomes blocked by other pedes-
trians or obstacles and is unable to move, the actual velocity is set
to 0.

The set of rules presented above, along with the floor field, fully defines a
cellular automata based model of movement with discrete velocity and ac-
celeration. In this model, pedestrians exhibit two kinds of social behaviour:
they either try to move along the shortest path to the exit or try to main-
tain a certain amount of personal space by distancing themselves from others
(which, when described in the language of physical forces, is analogous to a
short range repulsion). Using parameter β we can control the way in which
pedestrians switch between these behaviour.

The last thing we need to do is to define how this model and values relate
to the real world. We assumed that each cell is a rectangle with length 0.5 m
and each time step lasts 0.5 s. Other physical properties follow directly from
these assumptions.
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3. Differential model

The differential model we use in this comparison is based on a standard
differential equation with a stochastic component (the Langevin equation).
It should be noted that in many models (including our work) the stochastic
component is usually omitted. The most general form of this equation is

m
dv

dt
= FD + F S + FG +

√
2ε
τ
ξ , (1)

where on the right hand side all terms correspond to forces induced by some
social or psychological phenomena [5]:

• FD — desired force

FD = m
vded − v

τ
(2)

is a force which expresses the desire of a pedestrian, whose current
velocity is v, to move in a certain direction (indicated by vector ed)
with desired velocity (speed) vd. Parameter τ controls the character-
istic acceleration time and m is the mass. In our simulations τ = 0.5 s
and m = 80 kg for all pedestrians.

In order to make the differential model as similar as possible to the
cellular automata model, we decided to divide the simulated geome-
tries into cells with the same dimensions as in the cellular automata
model. Using the floor field, we assigned each cell a desired direction
ed — a unit vector pointing from the geometrical centre of a cell to
the geometrical centre of the neighbouring cell with the lowest floor
field value.

• F S — social force

F S =
∑
j

A exp
(
−εij
B

)
enij (3)

is a repulsive force between pedestrians. It depends on the distance
between pedestrians (εij = rij −Ri−Rj , where rij is the distance be-
tween the geometrical centres of pedestrians, Ri and Rj are the radii
of pedestrians). Vector enij is a unit vector pointing from the geomet-
rical centre of pedestrian j to the geometrical centre of pedestrian i.
Both A and B are constants. In our simulations, we assume that
all pedestrians have the same radius R = 0.25 m, A = 1000 N and
B = 0.08 m.
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• FG — granular force

FG =
∑
j

[
(−εijkn − γvnij)enij + (vtijεijkt)e

t
ij

]
g(εij) (4)

is a force inspired by granular interactions and it acts only when
εij < 0. For the sake of similarity between the differential and dis-
crete model we decided to omit this term. Still, given the short-range
nature of granular interactions, the results from this modified version
should be in agreement with the results from the unmodified model for
small velocities and small concentrations of pedestrians. However, it is
impossible to observe phenomena dependent on granular interactions
(e.g. clogging). A detailed description of all parameters and values of
constants used in the omitted term can be found in [5].

4. Results

We tested both models on two geometries — an empty room (i.e. without
obstacles) and a typical classroom. The empty room is a square consisting
of 10×10 cells (Fig. 1). At the beginning of the simulation the room is filled
randomly with 25 pedestrians. The classroom consists of three rows (Fig. 2).
There are five desks in each row and at the beginning of the simulation two
students are placed behind each desk. The teacher’s desk is located near
the blackboard in front of the class. In both the empty room and classroom
the width of the exit is 2 cells. Pedestrians are removed from the exit at the
beginning of each time step (integration step for the differential model).

Fig. 1. Empty room filled with 25 randomly distributed pedestrians. Arrows point
in the desired direction.
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Fig. 2. Classroom with 30 students and one teacher. Arrows point in the desired
direction.

In terms of average evacuation times the results we get from both mod-
els and empty room geometry are consistent (Figs. 3 and 4). When β = 0
(which means that pedestrians follow the shortest path to the exit and do
not try to separate from others) pedestrians in the CA model evacuate in
slightly shorter time. However, evacuation time increases with β and for
β = 0.5 average evacuation times in both models are almost identical. When
β > 0.5 pedestrians take longer time to evacuate. Minimal evacuation times
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Fig. 3. Empty room: average evacuation time as a function of desired velocity
for the differential model (diamonds) and CA model with β = 0 (triangles). The
filled parts of the plot mark the maximal and minimal evacuation times for the
differential model (light grey) and CA (dark grey). The inner plot shows the same
relation between average evacuation time and desired velocity on a logarithmic
scale.
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Fig. 4. Empty room: average evacuation time as a function of desired velocity for
the differential model (diamonds) and CA model (triangles) with β = 0.25 (top
left), β = 0.50 (top right), β = 0.75 (bottom left), β = 1.00 (bottom right). The
filled parts of the plot mark the maximal and minimal evacuation times for the
differential model (light grey) and CA (dark grey).

are independent of β and also, especially for high desired velocities, nearly
equal for both models. It can be easily explained by the fact that mini-
mal evacuation time is determined by the pedestrian closest to the exit and
he or she often manages to leave the room without interacting with other
pedestrians. Maximal evacuation time increases with β and is more suscep-
tible to the change of this parameter than average evacuation time. When
β = 0.5, much like with average evacuation time, maximal evacuation time
is almost equal for both models. It is also interesting that in both mod-
els average evacuation time from an empty room as a function of desired
velocity follows the relation: t̄ ∝ vαd .
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Given the similarity of evacuation times, one could expect that other
properties will also be, at least, comparable. Unfortunately, if we look at
average relative evacuation time (Fig. 5), we can clearly see this is not the
case. Average relative evacuation time is a quantity which measures how
other pedestrians influence our evacuation. It is calculated by dividing the
actual evacuation time of a pedestrian by the evacuation time of the same
pedestrian measured in a system consisting of only that one pedestrian. For
the kind of cellular automata model we use the relation between average
relative evacuation time and β is typical — the former increases with the
latter. Average relative evacuation time also increases with desired velocity.
However, when the differential model is used, the reverse is true. It should
not be surprising, because both models handle interactions in a very different
way. One possible explanation is that in the differential model pedestrians
located further away from the exit can push forward pedestrians closer to
the exit.

0 2 4 6 8

1.
0

1.
5

2.
0

2.
5

desired velocity [m/s]

re
la

tiv
e 

ev
ac

ua
tio

n 
tim

e

●

●

● ●

●
●

● ●

●

●

●
●

●

●

● ●

●

●

DE
CA 0.00
CA 0.25
CA 0.50
CA 0.75
CA 1.00

Fig. 5. Empty room: average relative evacuation time as a function of desired
velocity for the differential model and CA model for different values of β.

While in both models average velocity increases with desired velocity,
pedestrians in the differential model are never able to move with their desired
velocity for the entire duration of the simulation (Fig. 6). It is possible in
the cellular automata model because pedestrians, especially when β is high,
can move relatively freely without blocking one another. Such behaviour
also explains why higher velocity of cellular automata pedestrians does not
necessarily translate into shorter evacuation times.
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Fig. 6. Empty room: average velocity as a function of desired velocity for the
differential model and CA model for different values of β.
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Fig. 7. Classroom: average evacuation time as a function of desired velocity for
the differential model (diamonds) and CA model with β = 0 (triangles). The
filled parts of the plot mark the maximal and minimal evacuation times for the
differential model (light grey) and CA (dark grey). The inner plot shows the same
relation between average evacuation time and desired velocity on a logarithmic
scale.
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It is also worth mentioning that in both models pedestrians form clusters
around the exit (if their density is high enough). However, due to the lack of
necessary interactions it is impossible to achieve clogging. Pedestrians are
always able to leave the room in a coherent stream.

Figures 7–10 contain results equivalent to the ones presented above but
for a classroom geometry. The average evacuation times, while still in the
same range for β = 0.50 and β = 0.75, lack the consistency of the results
obtained for the empty room geometry. The same can be said about the
minimal and maximal evacuation times. While the minimal times are close
together, the maximal times in the cellular automata model are much higher.

2 4 6 8

0
5

10
15

20
25

30

desired velocity [m/s]

ev
ac

ua
tio

n 
tim

e 
[s

]

2 4 6 8

0
5

10
15

20
25

30

desired velocity [m/s]

ev
ac

ua
tio

n 
tim

e 
[s

]

2 4 6 8

0
5

10
15

20
25

30

desired velocity [m/s]

ev
ac

ua
tio

n 
tim

e 
[s

]

2 4 6 8

0
5

10
15

20
25

30

desired velocity [m/s]

ev
ac

ua
tio

n 
tim

e 
[s

]

Fig. 8. Classroom: average evacuation time as a function of desired velocity for
the differential model (diamonds) and CA model (triangles) with β = 0.25 (top
left), β = 0.50 (top right), β = 0.75 (bottom left), β = 1.00 (bottom right). The
filled parts of the plot mark the maximal and minimal evacuation times for the
differential model (light grey) and CA (dark grey).
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Also, the average evacuation time no longer scales like t̄ ∝ vαd in the cellular
automata model. However, we think that the results in terms of evacuation
times are still comparable.
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Fig. 9. Classroom: average relative evacuation time as a function of desired velocity
for the differential model and CA model for different values of β.

Much like for the empty room geometry, average relative evacuation time
increases (in this case linearly) with β in the cellular automata model and
decreases in the differential model. What is surprising is that when β = 0
(there are no explicit interactions between pedestrians) average velocity as
a function of desired velocity is almost the same for both differential and
cellular automata models (Fig. 10). Still, it does not translate into similar
evacuation time.

In both models pedestrians form clusters around the exit. The differ-
ence lays in the way they get to the door. In the cellular automata model
pedestrians are able to move more or less freely near the desks and each
other. In the differential model, the repulsive force between pedestrians and
desks prevents them from crossing the border marked by each row and forces
them to form queues between rows. It is yet another example of how differ-
ent handling of local interactions can change the overall dynamics and one
of the factors responsible for the discrepancies in the evacuation times.
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Fig. 10. Classroom: average velocity as a function of desired velocity for the differ-
ential model and CA model for different values of β.

5. Conclusions

Our research shows that it is possible to achieve a satisfying level of sim-
ilarity between the differential and discrete models of evacuation. The two
models we studied, at least in terms of average evacuation times, produce
comparable results. Because of the differences in handling of local interac-
tions, other properties and phenomena depend strongly on the underlying
geometry. However, we believe that through some clever manipulation of
the transition rules, the differential and discrete models can be brought
even closer together without resorting to an overzealous discretisation of the
former.

The results of our simulations indicate that discrete velocity can be easily
added to cellular automata models in a plausible way. While the differential
models of evacuation will always have the advantage, as they incorporate
velocity and other similar physical quantities more naturally, cellular au-
tomata models, in our opinion, can be a valid alternative in cases where
exact and continuous values of velocity are not required.

As for future work, we are currently trying to modify the way local
interactions are defined in our cellular automata model. After some adjust-
ments, it should be possible to mimic the phenomena (e.g. clogging, “faster
is slower” behaviour) that can be observed in the differential model with the
full granular interactions term.
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This paper has been based on the results of a research task carried out
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