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Structure-function-based multifractal analysis performed on a signal (as
if it is a stochastic walk), and on its integrated counterpart (as if it is a
noise) provides an insight into a generic structure of the data i.e. whether
there appears a multiplicative organization among signal values. Tests of
scaling properties in synthetic signals with known fractal properties, when
scaling intervals correspond to the time scales important for the cardiac
physiology, validate application of the methodology to cardiac interbeat
time RR intervals. 24-hour Holter recordings of healthy people of different
age are studied. The nocturnal signals of young people reveal the presence
of the multiplicative structure. This structure is significantly weaker in
diurnal signals and becomes less evident for elderly people. The above
finding is used to develop a qualitative and quantitative way to estimate
the advancement of the aging process in a healthy human is proposed.
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1. Introduction

In order to apply the multifractal analysis based on the structure func-
tion to some time series when the data show a noise process then one has to
perform a partial summation of the data before the further analysis [1]. How-
ever, if the random walk is analyzed then no partial summation is needed.
Thus, for each given signal, before going into the analysis, one has to take
decision shall the data be treated as a noise process or as a random walk
process. In the following, we show what can be gained if both analyses are
performed. The method, applied to 24-hour Holter recordings of cardiac
time interbeat signals of healthy people, allows us to estimate the advance-
ment of the aging process in a healthy human. The paper collects results
presented in [2,3] on ability to create the multifractal index of aging. Addi-
tionally, we present new arguments, Sec. 2, supporting our approach.

The structure-function-based multifractal analysis relies on scaling prop-
erties of some statistical measure of the data set (see, e.g. [1]). Namely, if
{Xi, i = 1, 2, . . . , N} is a time series for which the multifractality is investi-
gated, and R(i, n) is a function that measures a certain property of a signal in
the i-th box containing n consecutive points of data (boxes do not overlap),
then the multifractal analysis considers scaling properties of all real value
moments of R(i, n). This means that it is verified whether the following
power-law scaling exists or not

Z(n, q) = 〈|R(i, n)|q〉{Xi} ∼ n
τ(q) (1)

for different real q. When the power-law scaling for some q exists, we say that
the process under study is a fractal. If the scaling exponent function τ(q)
is not a linear function of q then we say that the process is a multifractal.
The multifractal spectrum h→ D(h) is obtained from the scaling exponent
function τ(q) by the Legendre transformation (q, τ(q))→ (h,D(h)).

Different values of q correspond to certain statistical properties of a sig-
nal. For example, when q = 2, the method provides estimates for the Hurst
exponent, H = τ(2)+1

2 . This way the multifractal approach allows us to
investigate different aspects of the data.

It often appears that the scaling curves (i.e. logZ(n, q) vs. log n plots)
are fairly linear. Hence, the signal can be classified as a fractal. However, if
one looks more carefully then one discovers different scaling regimes. Often
one-type of scaling is present for the short scales and another one for the long
scales. Such changes in scaling could be related to changes in the intrinsic
properties of the considered time series [4, 5].

Traditionally data series with cardiac interbeat time intervals (so-called
RR-intervals) are studied in four ranges of frequency scales [6]: high-fre-
quency (HF) (0.15, 0.4)Hz, low-frequency (LF) (0.04, 0.15)Hz, very-low-fre-
quency (VLF) (0.0033, 0.04)Hz, and ultra-low-frequency (ULF)<0.0033Hz.
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Division into these ranges is associated with different physiological aspects of
cardiac rhythm control. Therefore, by matching the listed frequency bands
with the corresponding time scaling intervals, we hope to obtain possibil-
ity to have insights into these particular physiological aspects of heart rate
regulation.

In summary, in the following the multifractal properties of a signal
are studied following the twofold estimates: as if it was a stochastic walk
(a direct signal), and as if it is a noise (when integrated), and when the scal-
ing intervals correspond to the frequency bands important for the cardiac
physiology. In Sec. 2, by analysis of the results obtained from synthetic sig-
nals with known fractal properties, we provide arguments that this method-
ology allows us to detect multiplicative structure of the data. Then, in Sec. 3,
the method is applied to Holter recordings of RR-intervals of healthy people
to observe changes in the heart regulation caused by the circadian rhythm
and healthy aging.

2. Scaling of synthetic signals in cardiac scales

In the simplest case, the structure function is calculated as R(i, n) =
|X(i + n) − X(i)| [1]. However, the most popular ways to get Z(n, q) are
Multifractal Detrended Fluctuation Analysis (MDFA) [7] and Wavelet
Transform Modulus Maxima (WTMM) [8]. Below there are results ob-
tained from both approaches: WTMM and MDFA, applied to synthetic
signals. The scaling is searched for the cardiac frequency bands described in
the previous section cardiac frequency bands. Namely, since the mean car-
diac interbeat interval can be approximated as 0.8 s, we assume the following
relation between the frequency intervals and scaling intervals: the interval of
{3, 7} points corresponds to HF, {8, 31} points correspond to LF, {32, 420}
points describe VLF and interval consisting of more than 420 points reflects
ULF. (In the following, we use the software provided by Physionet group [9].)

2.1. Multifractality of fractional Brownian motions

Fractional Brownian motions fBmH(t) are the best known monofractal
processes. The parameter H, called Hurst exponent, is the self-similarity
index and H ∈ (0, 1). For any fBmH the spectrum is expected to be
a one-point set {(H, 1)}. However, numerically obtained spectra are only
point-like, namely, they are narrow and:

— concentrated at (H, 1) for a typical path of fBmH(i);

— located at (1+H, 1) if analysis is performed on the integrated fBmH(i)
signal

fBmint
H (k) = Σk

i=1fBm(i) ;
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— concentrated at (0, 1) independently of H if the multifractality is
searched for the process of increments of fBmH(i)

fBminc
H (i) = fBmH(i+ 1)− fBmH(i) .

In Fig. 1 we collect the information where the point-like spectra are
located and what their widths are, if the time intervals of the scaling of the
structure function (calculated according to WTMM and MDFA methods)
are adjusted to the regions important for cardiac physiology: LF, VLF and
ULV. The numerical instabilities appearing when scaling is limited to HF
prevent us from providing values of good quality.

Fig. 1. The mean position of the maximum (dots) in the point-like spectrum ob-
tained from fBmH and the spectrum mean width (as error marks) for the frequency
bands LF, VLF and ULV, subsequently from left to right. The width is estimated
in a way described in [2]. Plots denoted as fBm correspond to fBmH , fBm_int to
fBmint

H , and fGN to fGnH .

From Fig. 1 we can learn that results of both methods overlap satisfac-
tory well when analysis is performed in the VLF interval. Moreover, the
difference in the position of the spectra in the case of noises (namely, frac-
tional Gaussian noises, fGnH) and their integrated counterparts (fBmH)
is evident and equals to H, and the difference between the spectra of Brow-
nian motions (fBmH) and their integrated counterparts (fBmint

H ) is always
equal to 1. Therefore, we can claim that the method which consists of simul-
taneous study of two signals: either a signal and its integrated counterpart,
or a signal and its increments, allows us to distinguish noises from additive
processes.
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2.2. Multifractality of binomial cascade

Binomial cascades M(t) are the simplest multiplicative processes and
celebrated multifractal signals. Their properties are becoming more clear if
we know the way in which they are constructed. So, let us briefly recall their
construction [1].

Consider a unit interval. Associate it with a unit mass. Divide the unit
interval into left and right segments of equal length. Also, partition the
associated mass into two fractions, ξ and 1 − ξ, and assign them to the
left and right segment respectively. The parameter ξ is in general a random
variable, governed by a probability distribution function p, p(ξ) ∈ [0, 1]. The
fraction ξ is called a multiplier. Each new subinterval and its associated
weight are further divided into two parts following the same rule. Hence, at
the stage K, we have the unit interval divided into 2K equal subintervals
k = 1, . . . 2K with weights wk

wk = u1u2 . . . uK ,

where uj is ξi or 1− ξi for i = 1, . . . , 2K−1.
If p(ξ) = δ(ξ−m) for some m ∈ (0, 1) and m〈〉12 (hence, we perform the

deterministic construction) then for a signal Mm(k) = wint
m (k) we have the

rigorous description of its multifractal properties. Since the scaling function
τ(q) takes the form

τ(q) = − log2 [mq + (1−m)q]

then the parabola-shape spectrum is expected with maximum at hmax and
width related to m in a way shown in Fig. 2. Notice, that if m is close
to 1

2 , namely |m − 0.5| < 0.18 then hmax is close to 1, hmax(m) − 1 < 0.1.

Fig. 2. The position of the maximum (solid line) and the width (dashed line) of
the multifractal spectrum of the binomial measure in the deterministic case.
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Moreover, the spectrum is narrow ifm is about 1
2 . Thus, form close to 1

2 the
binomial cascade spectrum could be hardly distinguished from the strongly
antipersistent integrated fractional Brownian motion, namely from fBmint

H
with H close to 0. Fortunately, the incremental process M inc

m (k) = wm(k),
called the binomial noise, provides the multifractal spectrum shifted to the
left by value significantly smaller than 1, namely by 0.8 what allows to
distinct a binomial cascade signal from any antipersitant Brownian motion.

The case of the antipersistent fBmH is important for the cardiac inter-
beat signal investigation. According to many studies [11,12,13,14,15,16,18,
19], the RR-signals can be approximated by fBmH with H = 0.2.

By computer tests we checked if the above described property holds also
for the stochastic cascade described below.

Let U[0,1] denote a uniform distribution on [0, 1]. Consider that m is a
random variable constructed m = 1

2 + sξ, where ξ ∈ U[0,1] and s ∈ [0, 1].
Different values of s lead to different stochastic cascades with expected

value of multiplier 〈m〉 = 1
2 + s

2 .
The stochastic cascade noise is positive, what means that the mean value

is non-zero. To verify the influence of the non-zero mean, we performed tests
with signal data randomly shuffled M inc

〈m〉
shuffling→ Mm,sh before applying the

multifractal analysis.
In Fig. 3 we show how the distance between the maxima of the spectra of

M〈m〉 andM inc
〈m〉, denoted as∆max, depends on 〈m〉 when scaling is performed

in intervals corresponding to LF, VLF and ULF bands. Together we present
results obtained from the shuffled signals.

Fig. 3. Difference ∆max between maxima in multifractal spectra obtained from
signals of binomial noises randomly shuffled for the two methods: MDFA and
WTMM, and for the considered frequency bands.
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It turns out that both methods: WTMM and MDFA, for 〈m〉 close to 1
2 ,

in all scaling intervals, provide ∆max significantly distant from 1. Notice
that the result for shuffled data is ∆max = 1

2 what could indicate that if
the multiplicative dependences between consecutive elements of signal are
broken then the structure-function-based multifractal analysis interprets a
signal as a noncorrelated white noise.

Similarly to the properties found for fBmH processes, the most con-
sistent results are obtained if the scaling is performed in the VLF interval.
Therefore, in Table I we present the values of hmax obtained by WTMM
and MDFA methods in the VLF band. From the table we see that the best
resolution is given by WTMM method.

TABLE I

Mean values of hmax in spectra calculated in the VLF band by WTMM and MDFA
methods for signals with selected values of 〈m〉.

〈m〉 0.53 0.55 0.60

wtmm mdfa wtmm mdfa wtmm mdfa

M inc
〈m〉 0.15 0.13 0.16 0.15 0.27 0.19

M〈m〉 0.98 1.00 0.99 1.00 1.01 1.00
Mm,sh −0.01 0.02 0.00 0.03 0.07 0.06
M int

m,sh 0.47 0.51 0.52 0.51 0.52 0.55

2.3. Conclusion — the multifractal methodology

Performed experiments provide arguments that we gain an insight into
the signal structure if the multifractal analysis is performed simultaneously
on two signals:

• when a signal provides a multifractal spectrum with the maximum
hmax substantially smaller than 1, then repeat the analysis for inte-
grated data;

• when a signal leads to the multifractal spectrum with the maximum
hmax close to or greater than 1, then repeat the analysis for the signal
of increments.

Then, if the distance ∆max, between hmax of a signal and either hint
max of

its integrated counterpart, or hinc
max of incremental process, is significantly

different from 1 then the studied signal has the multiplicative structure.
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Evaluation of the value hmax from the multifractal spectrum could be dif-
ficult because often the shape of the spectrum is far from a regular parabola-
like curve. Therefore, it is recommended to consider hmax = h(q = 0), see [3]
for details.

The detection of the multiplicativity works in the best way for the
WTMM method and scaling applied to the VLF interval. That is why, in
our further investigations of cardiac signals, we consider only scaling prop-
erties of the structure function provided by WTMM method which appear
in the VLF interval.

3. Cardiac signals study

24 h Holter monitoring of ECG was performed for 124 healthy subjects:

• young adults: 36 persons at the age of 18 . . . 26;

• middle-aged adults: 40 persons at the age of 45 . . . 53;

• elderly: 48 persons at the age of 65 . . . 94.

From each signal we extracted two parts of 6 hour long of time intervals
between consecutive normal (initiated by the sinus node — the heart pace-
maker) heart contractions. Ectopic beats or artefacts were excluded from a
signal. One part corresponded to the nocturnal activity: sleep, and the other
one to the usual afternoon activity: wake. For each person, and for his/her
each sleep/wake signals, the WTMM structure functions were found. Then
results were collected in groups according to the age and circadian phase.
In Fig. 4 we show the resulting multifractal spectra obtained when scaling
was performed in the VLF interval.

The consistent changes with age can be read from the spectra obtained
from raw wake signals. The spectrum maxima move to the higher h value
with aging. Moreover, when these maxima are compared to the maxima in
spectra obtained from the integrated signals we find ∆max ≈ 1. Hence the
spectra of wake signals can be compared to spectra of monofractals.

The spectra of sleep signals are different. The maximum hmax moves
to the lower values while we are moving from the young group to the el-
derly one. Moreover, only the spectrum obtained from integrated signals
of elderly people is shifted to the right by about 1. The spectra obtained
from integrated signals of young and middle-aged adults are shifted to the
right by the value significantly smaller than 1. Therefore, we claim that the
sleep signals for young people have the multiplicative structure and that this
structure is vanishing in the process of aging.
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Fig. 4. Multifractal spectra calculated from the group averages of the WTMM
estimates to the structure functions of the cardiac signals. The scaling for the
averages of structure functions was performed in VLF time interval. τ(q)s were
estimated for q ∈ [−5, 5] with step ∆q = 0.1.

From these qualitative observations we can move to the quantitative de-
scription of maxima hmax, Hurst exponents H and distances between max-
ima ∆max which in the best way (i.e., with the highest specificity and sensi-
tivity) describe the healthy aging. It turns out that by checking the following
conditions:

(a) wake and sleep signal: hsleep
max − hwake

max > 0.05
(b) wake signal: hint

max > 1.15
(c) sleep signal: ∆max > 0.85
(d) wake and sleep signal: Hsleep −Hwake < 0.01
(e) sleep signal: H int > 0.90

(2)

in the multifractal spectra obtained from diurnal and nocturnal parts of the
RR signal of each person separately, we can evaluate the advancement of
the healthy aging of a person by the number of yes answers.
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Note that two conditions of (2) are related with a raw signal, two others
estimate properties of the integrated signal, and one condition compares
raw to integrated signal. Furthermore, some conditions are related with
a series of daytime or nighttime separately, and also there are conditions
that are related with the difference in the multifractal description because
of the circadian cycle. Hence, both components used in our analysis, i.e.
analysis of raw signals and its integrated partner, as well as separation of the
heart signal during ordinary daily activity from nocturnal rest, are equally
important to reach the final result.

We tested the five conditions (a)–(e) to the individual spectra of 128
people considered in this study. Here is the ratio in [%] of positive answers
collected in the age groups:

group name 0 1 2 3 4 5

young 53 25 11 11 0 0
middle 3 33 30 20 7 7
elderly 0 10 10 21 29 29

We see that spectra of 78% of young people fulfil none or one condition,
while 79% of spectra of elderly people meet three or more of the (a)–(e)
criteria.

4. Conclusions

We provided a practical way how to get insights into the generic struc-
ture of the process describing the cardiac interbeat signal, namely, how to
distinguish the additive from multiplicative structure in the analyzed data
by multifractal tools. The proposed rule of thumb advises to perform anal-
ysis for the two signals corresponding each other, and then to investigate
carefully the distance∆max between the maxima in the multifractal spectra.

Thanks to this methodology we could study physiological processes re-
sponsible for the heart rate oscillations in the VLF band. All physiologic
mechanisms responsible for VLF are not clear and still under discussion [28]
but the two basic sources of these oscillations are thermoregulation and the
rennin-angiotensin-aldosterone system.

Fractal properties of the power spectra in VLF and ULF have been an-
alyzed for more than 20 years [10, 11, 12, 13, 15, 17, 20]. Fractal measures
are found to have prognostic significance for patients with cardiovascular
diseases [21, 22]. The transition in the regulation of the heart rate between
diurnal and nocturnal human activity has been suggested by many mul-
tifractal studies [12, 13, 16, 24, 26, 27, 23]. However, here by qualifying the
changes in ∆max, we could suppose that the transition is related with the
switch from multiplicative signal organization to the other one.
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It is known that autonomic regulation declines with advancing age
[29,17,30]. But the reliable methods to measure this decline are still lacking.
Since the multiplicative structure of nocturnal signals significantly weakens
during the process of healthy aging we proposed the measure of health aging
— the number of positive responses to the list of questions (2) obtained from
a given 24 hour Holter signal can be considered as the multifractal age.
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