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We consider a simple model of gene regulatory dynamics derived from
the statistical framework describing the binding of transcription factors to
DNA. We show that the networks representing essential interactions in gene
regulation have a minimal connectivity compatible with a given function.
We discuss statistical properties using Monte Carlo sampling. We show that
functional networks have a specific motifs statistics. In the case where the
regulatory networks are to exhibit multistability, we find a high frequency
of gene pairs that are mutually inhibitory and self-activating. In contrast,
networks having periodic gene expression patterns (mimicking for instance
the cell cycle) have a high frequency of bifan-like motifs involving four genes
with at least one activating and one inhibitory interaction.
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1. Introduction

After billions of years of evolution Earth’s life is a very diverse phe-
nomenon, yet all the living organisms are made of simple building blocks
called cells. The single cell is a device designed to interpret internal or
external signals in order to enhance its survival prospects. We focus here
on gene regulatory networks (GRN), the set of interactions between genes.
These interactions along with the gene expression machinery allow all liv-
ing cells to control their gene expression patterns. In the last decade, our
knowledge how any given gene can affect another’s expression has been sig-
nificantly extended through various experiments. For example, small gene
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networks have been constructed to implement simple functions in vivo [1,2],
and much larger sets of interactions have been derived from a number of
organisms [3, 4, 5]. Therefore, it has been possible to show that several
subgraphs of interactions (“motifs”) arise more frequently than might be
expected [6, 7, 8, 9].

Here we ask whether motifs can emerge in network architecture due to
functional constraints (output patterns) imposed on GRNs. This question
along with framework and results presented further in the article have been
already extendedly discussed by Burda, Krzywicki, Martin and myself [10].
With respect to this last reference, the following work contains summary
of results presented by myself during Mini-symposium in Kraków with ad-
ditional discussion of possible questions that can be explored within our
framework.

The structure of the article is following. First, we briefly describe the
model structure. Second, the process of Markov chain Monte Carlo (MCMC)
sampling is described. Third, we investigate the statistical properties of the
obtained ensemble of networks. Particularly, we define the concept of “essen-
tial” interactions and quantify the sparsity of observed GRNs. Furthermore,
we analyze two classes of GRNs having different functional capabilities (mul-
tistability vs. time periodic behavior). Interestingly, we find very different
motifs for these two types; in Alon’s [11,12] terminology, the first type leads
to mutually inhibitory pairs acting as bistable switches, while the second
type leads to bifan, diamond and four point cycle motifs. Last, we conclude
by summing up all the findings and discuss possible ideas that might be
investigated using our framework.

2. The model

2.1. General framework

Compared to the well-known model of Boolean networks (see [13] and
references therein) in which a given gene can be either on or off, here we
allow gene expression to have intermediate values. We consider a system of
N genes where each gene produces corresponding transcription factor (TF).
Particularly, for i-th gene its normalized expression level Si is a continuous
variable ranging from 0 to 1, where zero means no production of TF and
one corresponds to maximal production rate. Since we have N genes we can
define a vector variable S = (S1, S2, . . . , SN ) which we call a phenotype. In
our approach, we assume that every gene can be influenced by any of N
types of TFs. As a result we obtain a N × N weight matrix W , where a
given entryWij corresponds to the strength of interaction between i-th gene
and j-th TF. Hereafter we refer to W as the genotype and a formula to
determine the values of Wij will be given in the following subsection.
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To find gene expression pattern S(t) at any given time t, we propose a
deterministic dynamics described by a map S(t+ 1) = G (S(t),W ), where
we call initial phenotype S(0). In the context of discrete dynamical systems,
G is the global transition function and S(t) denotes the configuration of the
system at time t. This discrete dynamics can be represented by a sequence
of steps leading to an attractor which is either a cycle or a fixed point.

If we had only one target phenotype, as it is in [14], we would sample the
space of all genotypes leading from S(initial) to the “vicinity” of some fixed
S(target). In order to quantify how close a given phenotype is to the target
one, we define a fitness function

F (S) = exp
(
−fD

(
S,S(target)

))
, (1)

where D(S,S′) =
∑

i | Si−S′i | is the difference of expression levels for each
gene, and f ∈ R is a control parameter.

Summary of the main model ingredients is given in Table I. In the case of
multiple target phenotypes, we can still use Eq. (1), but the “total” distance
used to calculate fitness should be a sum of distances from n fixed point
phenotypes and corresponding target phenotypes; for cycling behavior target
phenotypes are consecutive steps of the imposed cycle.

TABLE I

Short summary of model ingredients: (i) Si is a continuous variable corresponding
to expression level of gene i; (ii)Wij represents the strength of interaction between
gene i and TF j; (iii) S(target) corresponds to cell’s function; (iv) using fitness
function we sample space of genotypes leading from S(initial) to the “vicinity” of
S(target).

Phenotype S = (S1, S2, . . . , SN )
Si ∈ [0, 1]

Genotype W is matrix N ×N
Dynamics S(t+ 1) = G (S(t),W )

S(0)︸︷︷︸
S(initial)

W−→ S(1) W→ . . .
W→ S(t) W−→ S(t+ 1)︸ ︷︷ ︸

fixed point phenotype

Fitness F (S) = exp
(
−f
∑

i

∣∣∣Si − S(target)
i

∣∣∣)
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2.2. Microscopic interactions

In order to determine the strength of interaction between TF and DNA
strand, we represent each TF as well as each binding site by a character string
of length L with characters belonging to a 4 letter alphabet. Following the
standard practice [15], we assume that the free energy of one TF molecule
bound to its target site is, up to an additive constant, equal εdij , where ε
is the single mismatch energy and dij is a number of mismatches between
i-th binding site and j-th TF (see Fig. 1). Furthermore, one can define the
“interaction strengths” Wij via Boltzmann factor

Wij = e−εdij , (2)

with normalizing constant set to 1 (cf. [16]). In the case of nj TFs of j-th
type one can derive [16,17] the probability pij that precisely one of them is
bound to the binding site of i-th gene

pij =
1

1 + 1/(Wijnj)
=

1
1 + exp (εdij − ln(nSj))

, (3)

which dependence is known to physicists as Fermi function. In the above
formula, for the sake of simplicity, we assume that nj = nSj , where n is a
model parameter representing the number of TFs. For the current work we
use n = 1000, L = 12 and ε = 2, though we have checked that for biologically
relevant parameters the model findings are qualitatively the same [14,18].

A T G T C A A T G C

A A T C G C G T C A

TF j
mismatch

match

1 2 3 j N gene i

Regulatory region of N sites gene j

dij = 7

jid-e=jiW

Fig. 1. Schematic representation of the regulatory region of gene i with N binding
sites. Represented is the interaction Wij mediated by the binding of TF j to the
j-th site of that region. Here, the string representing the TF is of length L = 10,
number of mismatches (not complementary regions) dij = 7, and the resulting Wij

is calculated according to Eq. (2).
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To keep the framework simple, we assume that gene i transcription is
“on” whenever at least one TF is bound within its regulatory region and
otherwise it is “off”. For inhibitory interaction the TF of type j bound
to its binding site is assumed to stop the transcription. The (normalized)
mean expression level of a gene is then identified with the probability that
transcription is “on”. Hence, for gene i with both activators and repressors
we have

Si(t+ 1) =

1−
∏
j

(1− pij(t))

∏
j′

(
1− pij′(t)

)
, (4)

where j runs over activating interactions and j′ over inhibitory interactions,
and pij(t) is given by Eq. (3) with Sj replaced by Sj(t). In the above, just
like in many other modeling frameworks, we use discrete time [13,19,20,21].

3. Mutation-selection balance

As already mentioned, we constrain GRNs to exhibit two types of be-
havior: (i) multistability, where a gene regulatory network has 2, 3, or more
fixed points (steady state expression patterns); (ii) cycling behavior, where
phenotype follows a cyclic trajectory in the space of gene expression pat-
terns. In the first case we start the system in one of these fixed points and
check whether after a long time it stays close enough to its starting point.
In the second case, we start with one of the patterns in the target cycle and
check if it stays close to the periodic trajectory. Particularly, for the steady
state behavior, we impose up to four fixed points that consist of N/2 levels
at 0 and N/2 at 1, and furthermore that are taken to be orthogonal. For
the case where one enforces a target cycle, we use the toy sequence [21] for
the yeast cell-division cycle (for details see [10]).

Since the space of viable GRNs is only a tiny fraction of the space of all
regulatory networks, we need to introduce some effective sampling method.
In particular, we use Markov chain Monte Carlo with the Metropolis rule
to explore this ensemble. The procedure is following, we start with random
genotype that is we draw all the characters representing gene’s regulatory
regions and TF molecules randomly, and calculate the corresponding weight
matrix W . Next, with each step we apply a point mutation to characters
representing DNA binding sites (alternatively we change the character of
interaction from activatory to inhibitory or vice-versa), recalculate W , and
according to Eq. (4) the associated fixed point phenotypes or cycling expres-
sion patterns S. Afterwards, having S we compute fitness of the genotype
and accept or reject the attempted move according to Metropolis acceptance
probability. This way by applying mutation-selection balance we obtain, af-
ter some initial period, an ensemble of viable genotypes constrained to have
particular function.
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4. Results

4.1. Sparsity of the essential interactions

Having obtained different ensembles of viable genotypes one would like to
know which of the interactions between DNA regulatory regions and TFs are
essential for network function. In order to get this information, we remove
one of the interactions from the genotype and check if the gene expression
pattern corresponding to this modified genotype is still close to the target
phenotype. If the removal of interaction from GRN leads to loss of its
functional capabilities we refer to this interaction as essential. Furthermore,
the set of all essential interactions for a given genotype defines essential
network for that GRN.

In previous work [14] on a simpler model with only one fixed point and
no allowance for inhibitory interactions, we found that the great majority
of genotypes had just one essential interaction per gene. In the case of
multistability, as we impose more fixed points, the mean number of essential
interactions grows only slightly, with a mean of 1.2, 1.5, 1.9 for 2, 3, and 4
fixed points respectively (for N = 16). Moreover, one gets analogous results
by forcing the expression vector to cycle through given patterns.

Qualitatively, the observed sparsity can be easily understood: in our
framework all the viable networks are subject to mutation-selection bal-
ance, that is on the one hand system prefers to increase its fitness (selection
criterion), and on the other hand the random mutations try to “keep” the
whole genotype maximally random. In terms of entropy, every additional es-
sential interaction has typically a high entropic cost: there are a few strings
that have low mismatch values and many that have high mismatch values.
Hence, observed essential networks are as sparse as possible to maintain
their functional capabilities.

4.2. Motifs emerge from function

To obtain insights into network structure, one can search for network
motifs [11,22], that is subgraphs which are overrepresented in a given GRN
compared to the randomized version of the network. In particular, we use
randomization proposed by Maslov and Sneppen [23]: the links are inter-
changed, so that both the in- and out-degrees of network nodes remain
unchanged. As a result, we find six types of motifs (defined in Fig. 2) which
are almost not present in the randomized GRNs. For instance motif “a” is
found on average 0.706(16), 2.358(39), 2.984(4) times per GRN with 2, 3,
and 4 fixed points respectively, and in the case of randomized networks its
frequency is only 0.002(1). Moreover, motif (a) is not present at all in the
case of GRNs with periodic expression patterns where the remaining five
motifs ((b) to (f)) play leading roles. The frequencies of these latter motifs
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for cyclic case are following: 5.451(41) for (b), 5.170(40) for (c), 4.533(42)
for (d), 6.676(22) for (e) and 2.296(29) for (f); in the case of randomized
ensemble the average number of these motifs per GRN is about two orders
of magnitude smaller. Additionally, motifs (b) to (f) are not present at all
in the multistable case.

Fig. 2. The most important motifs found for our two classes of functional con-
straints. Case of many stable fixed points: (a) double negative feedback loop with
auto regulation. Case of time periodic gene expression: (b), (c) incoherent dia-
mond, (d), (e) frustrated four-node loop, (f) incoherent bifan.

On qualitative level we see that different motifs arise for our two classes of
functional capabilities. In the case of multistability, a single motif (a) with
two genes which are mutually inhibitory and self-activating is extremely
important. Such a pair of genes can act as a bistable switch that fixes
itself in the considered target pattern, and then regulate other genes in a
downstream effect. Interestingly, this simple motif is found in a number of
biological gene networks, for instance in the genetic switch between lysogeny
and lysis of the phage λ [24].

For the case with time periodic output patterns, instead of the previous
motif we have a few four gene motifs that are strongly over-represented. In
the nomenclature of Alon [11,12], motifs (b) and (c) are incoherent diamonds,
while motif (f) is the incoherent bifan; the others, motifs (d) and (e), involve
a regulatory loop, and in fact these loops are “frustrated” (they have an odd
number of inhibitory interactions). Again, some of these motifs have been
found in biological gene networks [12] with the bifan motif being perhaps
the most prominent. Additionally, it is worth to notice that the presence of
“frustrated” loops (negative circuits) is expected for the systems that exhibit
time periodic behavior [25].

5. Discussion and conclusions

We have considered a relatively simple model of GRNs in which molec-
ular information is used to obtain a matrix of interactions between DNA
binding sites and TF molecules. Using our MCMC sampling procedure we



178 M. Zagórski

produce many regulatory networks and study statistical properties of the
obtained ensemble of GRNs. By introducing the concept of “essential in-
teractions” we are able to quantify the sparsity level of GRNs. As a result,
we find that regulatory networks are as sparse as possible being compatible
with a given function. This feature qualitatively agrees with biological net-
works, since the sparsity of interactions is also found in experimental studies
of simple organisms [26,27].

Within our model generated networks are evolvable and a given target
expression pattern can be realized through different topologies. Having such
framework, we can ask whether functional constraints shape the network
structure. Particularly, we consider two classes of constraints which resemble
two types of biological processes: (i) different stable gene expression patterns
can be interpreted as different types of cells during cell development, (ii)
cyclic gene expression is characteristic for cell cycle, where different genes
are excited/inhibited during different stages of cell division process. In the
case of multistability we observe two node motif that works as a bistable
switch between situations with one gene being “on” and the other being “off”.
In the case of target phenotypes being periodic in time the bistable switch is
not present, and four node motifs like bifan, diamond and “frustrated” loop
appear and are highly overrepresented. Hence, we can conclude that different
classes of motifs are observed for different types of functional capabilities of
GRN. This result is very striking if we realize that no motif structures are
incorporated inside our framework on any level. Instead, motifs emerge from
purely random background due to imposed functional patterns and selection
pressure.

A very gratifying point is that analyzed motifs are also found in bio-
logical networks. Interestingly, this result is obtained with assumption of
TFs binding independently to DNA, which is not always the case in biolog-
ical systems. Therefore, we have also checked what happens if one modifies
Eq. (4) to incorporate explicitly term giving the probability that two differ-
ent types of TFs bind to DNA in cooperative manner [28]. By increasing the
strength of cooperation we are able to obtain GRNs which are more dense
(have more interactions), thus frequencies of various motifs are also generally
higher than in the case with no cooperation. However, if we compare motif
statistics with randomized networks, the only strongly overrepresented mo-
tifs are the same as depicted in Fig. 2. Therefore, we can draw conclusion
that network motifs are determined by functional constraints rather than
cooperativity effects.

Last but not least, one can explore other interesting options within
proposed framework. One possibility is to study different kinds of output
patterns, which approach corresponds to imposing different functional con-
straints on GRN evolution. Particularly, it is still to be checked whether the



Emergence of Sparsity and Motifs in Gene Regulatory Networks 179

most abundant motif in experimental networks, namely feed-forward loop
(FFL), can be obtained in our model by constraining GRN to perform a
given function. Another option is to explore dynamics stability [29] of reg-
ulatory networks in order to see which of the obtained network topologies
are most robust to fluctuations in gene expression or node removal (gene
knockout). Finally, one might think of constraining the system to have not
only certain functional capabilities, but also to fulfill other types of criteria.
This way it might be possible to get GRNs closer and closer to biological
regulatory networks in a way similar to what was done in [30] for metabolic
networks.
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