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Agent-based models approximate the behaviour of simple natural and
man-made systems. Their performance is limited by the abstractions used
to implement them, i.e., finite state machines. “Cognitive Agents” perform
“Cognitive Acts” (i.e., Perceiving, Reasoning, Judging, Responding, and
Learning) and are the closest to the behaviour of simple biological entities.
We present a simple cognitive agent capable of evaluating if a strategy has
been applied successfully and capable of applying this strategy again with
small changes to a similar but new situation. We describe how a simple
agent can be trained to learn how to safely cross a road with “one lane
one directional highway” and later, when the situation changes, a road
with “two lanes one directional highway” and “two lanes on a bi-directional
highway”. Future research is outlined.

DOI:10.5506/APhysPolBSupp.5.21
PACS numbers: 89.20.Kk, 89.20.Bb

1. Introduction

Agent-based models accurately approximate the behaviour of simple
or simplified natural and man-made systems by mimicking and often bio-
mimicking simple entities. Many definitions exist for the term “agent” in this
context. Most of them are not terse and not easy to remember [1]. We like
the short definition according to which an agent is “an autonomous entity
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capable of interacting with its environment and other agents” [2] and [3].
The word “interacting” is used in an anthropomorphic sense. It means that
the agent communicates with and receives stimuli from other agents and the
environment and reacts accordingly to its understanding of the situation.
The ability of agents to act autonomously is limited to the predefined envi-
ronment and to the predefined situations to which the agent is expected to
respond, because agents can only act in a situation compatible with the way
they are designed. In fact, traditionally the behaviour of the agent is pro-
vided by means of a finite state machine or a set of finite state machines [2]
and [3]. A problem with all finite state machines is that their design, veri-
fication, validation, coding, and testing becomes progressively harder when
trying to prepare the finite state machine for all possible scenarios beyond a
small number. “Cognitive agents” partially solve this problem by perform-
ing “Cognitive Acts” (i.e., a sequence consisting of all of the following acts:
Perceiving, Reasoning, Judging, Responding, and Learning) as opposed to
agents, who perform “Reflexive Acts” (i.e., Perceiving and Responding) [1].
A cognitive agent has the ability to react to unexpected situations and the
ability to reason about these unexpected situations in order to react to them.
The functionality and performance of cognitive agents requires replacing the
finite state machine typical of “non cognitive” agents, i.e. “reactive agents”,
with more complex functional blocks, built using computational intelligence
methodology, i.e.: fuzzy logic, neural networks, evolutionary computation,
and various types of bio-mimicry. In reality, also cognitive agents are im-
plemented by means of software or a mix of hardware and software and are
still far from the performance of animals and humans. All animal species,
from insects to mammals, so far outperform digital computers in performing
cognitive functions [4]. The reason for this gap is that animal species use
a mix of analog and digital functions emphasizing distributed, event-driven,
collective, and massively parallel mechanisms, and make extensive use of
adaptation, self organization, and learning [4]. Indeed, all human beings
drive cars with a certain amount of dealing with imprecise, incomplete, and
vague information. Moreover, most of the time, human beings reason and
act, as a consequence of their reasoning, without taking any precise mea-
surement and without performing any precise computation (e.g., we park
cars successfully with a high degree of approximation). Human beings un-
consciously map what they perceive (e.g., hear, see, etc.) to an idealized
view of reality. They apply approximate rules to this approximate view of
reality and, eventually, produce an approximate result of their inference [3].
Geoffrey Hinton, one of the pioneers in artificial intelligence, in an interview,
said that computers are not nearly as good (as humans). Part of it is the
hardware, we have many billions of neurons, each of which has thousands
of connections. Even now, it is very hard to get computers that have the
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same amount of processing power and particularly the same access to stored
knowledge. The brain can access many gigabytes of knowledge in a tiny frac-
tion of a second. Only the biggest supercomputers can do that kind of thing
at present [5].

However, we believe that a good level of successful bio-mimicking can be
achieved with a few basic computational intelligence building blocks. In [3]
we wrote this could be achieved by defining and implementing a hierarchical
software layered model for the generic cognitive agents, a layered model in
a style akin to the hierarchical ISO OSI 7 layer model used in data com-
munication [6]. In this paper, we present a simple adaptive cognitive agent
capable of evaluating if a strategy has been applied successfully and capa-
ble of applying this strategy again with small changes to a similar but new
situation. We believe that a simple cognitive agent able to apply a finite
collection of algorithms can be evolved to deal with much more complex
situations.

2. The environment, the agent, and the experiment

At first, we assume that our environment consists of a segment of a one
lane highway characterized by unidirectional vehicular traffic, without any
intersection, see Fig. 1. This expressway and its traffic can be represented
and studied with a non-periodic boundary conditions Nagel–Schreckenberg-
like model, that is, a Cellular Automaton (CA) model based on an extension
of Elementary Cellular Automata (ECA) Rule 184 [7]. As customary in the
traffic modelling literature, we model the one lane highway as a large number
of adjacent cells, with each cell representing a segment of highway of 7.5m
in length, e.g. [7] and [8]. Such representation has been chosen because it
corresponds to the space occupied by the typical car plus the distance to
the preceding car in a situation of dense traffic jam. The traffic jam density

Fig. 1. Simplified diagram showing the highway, several cars, and several agents
(i.e., creatures, rabbits).
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is given by 1000/7.5m approximately equal to 133 vehicles per km. The
cells can be used to establish a system of 1-D coordinates. We assume that
our agent represents a creature with a strong impulse to cross the highway,
see Fig. 1. The impulse to cross could depend on some natural instinct or
need, e.g. foraging, mating, etc. There is a population of such creatures. All
creatures can cross the highway only at a predefined location defined by a
given cell number. Because only one creature can cross the highway at a
given moment in time, the creatures must line up in front of the crossing.
The instinct to cross the highway may be mitigated by what the creature
has witnessed, for instance it may have seen a similar creature being struck
by a vehicle while crossing the highway. All creatures lining up to cross the
highway witness a certain number of crossings and their outcomes (i.e., safe
crossing or death because of colliding with a vehicle). The creatures are not
able to measure distances accurately. They can only rank the position of
the vehicle with respect to the crossing cell according to a discrete number
of categories (e.g., {far, mid range, close} or, alternatively, {very far, far,
mid range, close, very close}, etc.).

It is reasonable to assume that at the beginning of the simulation many
creatures will be struck by vehicles. With the passing of time the creatures
learn how to decide if it is safe to cross or if it is better to wait. Eventually,
for certain densities of traffic and for certain speeds, it may never be safe to
cross.

Our work consists of giving the creatures a very primitive, basic algo-
rithm, to match patterns and to decide when it is safe to cross, based on
past experience. The same basic algorithm is expandable to different situ-
ations. For instance, if instead of having to cross a one lane highway the
creatures are required to cross a two lane highway, the creatures must be
able to adapt. Of course, at the transition, that is the change of highway
type, a few creatures may be struck by vehicles and perish. However, af-
ter a short time they recognize the new pattern and adjust the algorithm.
Similarly, if, instead of dealing with a one lane one directional highway, the
creatures deal with a multilane bidirectional highway, they can adapt.

2.1. One lane one directional highway

We assume that each creature can observe over time incoming vehicles
for a sufficiently long time to be able to infer the approximate speed of these
vehicles. At time we call by Ci the generic creature that is i-th in the queue
to cross the highway. We denote with i = 0, i.e. C0, the creature that is
at the crossing point at time t and must decide if to cross or not to cross.
Creature C+1 is the creature that has decided to cross before the current
creature arrived to the crossing point at time t. Unless we specifically provide
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this information, we make no assumption about the outcome of the crossing
of creature C+1. It may have been successful or unsuccessful. We call C−1

the creature next in line after C0 and C−2 the creature next in line after
C−1, etc., see Fig. 2.

Fig. 2. Simplified diagram showing the highway, several cars, and several sequen-
tially identified agents.

We call time t the time when the creature under consideration must
make a decision if to cross or not to cross, we assume that this creature has
observed the incoming traffic at times t− 1, . . ., t− n, where the value of n
depends on experiment. This observation allows the creature to evaluate the
approximate speed of an incoming vehicle within a set of possible categories,
i.e. very slow, slow, average, fast, and very fast. We assume that the creature
remembers what has happened to other creatures who have attempted earlier
crossings in similar circumstances. As long as the creature is capable of this
type of observation, it can build a mental table with all possible outcomes
for all possible combinations of vehicle distance and vehicle velocity from
the cell where the crossing may take place, see Table I. If crossing results in
a creature being struck all other creatures will “write” a “1” for the specific
distance velocity combination, while if the crossing is successful a “0” will
be left for the specific distance velocity combination. In other words, the
mental table in the beginning is populated with 0s in the assumption that
all possible distance velocity combinations allow crossing. After a certain
number of crossings the table may have be modified to look as in Table II,
where the combination of high speed and proximity have been found to be
hazardous to the creatures who have crossed.
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TABLE I

Table showing all possible combinations of vehicle position (i.e., rows) and vehi-
cle velocity (i.e., columns) at the beginning of a new experiment (i.e., no prior
knowledge is assumed and no leaning has taken place).

Very fast Fast Average Slow Very slow

Very close 0 0 0 0 0
Close 0 0 0 0 0
Mid range 0 0 0 0 0
Far 0 0 0 0 0
Very far 0 0 0 0 0

TABLE II

Hypothetical table content shown after a certain number of crossings.

Very fast Fast Average Slow Very slow

Very close 1 1 1 0 0
Close 1 1 0 0 0
Mid range 1 0 0 0 0
Far 0 0 0 0 0
Very far 0 0 0 0 0

A potential problem is due to the approximate nature of the linguistic
concepts adopted for defining speed and distance. For instance, it is conceiv-
able that while the combination of “Mid Range” and “Average” is safe most
of the times it may result in an accident at some other time. It is thus rea-
sonable to expect that after a certain number of safe crossings for the combi-
nation “Fast” (speed) “Mid Range” (distance), it may happen that a creature
may be struck for the same crossing. In fact, the actual values within a range
may be different and result in a different outcome. Considering the linguistic
labels as fuzzy sets, one can apply all the tools available within fuzzy logic
and all paradigms of “Computing with Words”. They can be found elsewhere;
see for instance [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]
and [29]. However, rather than trying to determine when it may be safe to
cross, one may also assume that the population of creatures is not very intel-
lectually sophisticated and that it is actually very conservative and prudent.
Thus, once a combination of “speed” and “distance range” has been found to
be unsafe, all creatures will avoid it.
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2.2. Two lanes one directional highway

In [3] we wrote that a hierarchical layered model should be defined for the
generic cognitive agents in a style akin to the hierarchical OSI 7 layer model
used in data communication. We added that If the interface between layers
is kept sufficiently generic, one could achieve an interoperability similar to
the one possible with the OSI 7 layer model in data communication. The
first layer of this architecture was meant to be a Perceptual Layer, akin to
the physical layer in the OSI 7 layer model. If we map the two lanes in
such a way that they are perceived as one lane by each creature, there will
be no need to modify the creature and the accumulated knowledge will be
applicable to the new situation. As a matter of simple example, this can be
achieved by logically OR-ing the traffic in one lane with the traffic in the
other lane and by transferring this information to the creature.

2.3. Two lanes on a bi-directional highway

The situation when the creature may have to cross a bi-directional high-
way with traffic flowing in opposite directions is more complex. It may be
decomposed into two consecutive crossings of one lane unidirectional high-
ways as in Sec. 2.1. The creature can:

• assess the situation with regard to half of the highway, for instance
with traffic flowing eastward;

• cross the highway, if safe, with traffic flowing eastward;

• stop at the boundary between the two halves of the highway;

• assess the situation with regard to the other half of the highway, with
traffic flowing westward;

• cross the highway, if safe, with traffic flowing westward;

• repeat the sequence.

Clearly, we cannot just lift a generic creature from one artificial world and
place it into another artificial world and expect that it will operate correctly.
However, if we design the artificial worlds in such a way that all relevant
information can be correctly transferred from the environment to the agent
(i.e., the creature), we can have a realistic agent capable of adapting to
different environments within a certain catalogue of possible environments.
One does not need to think in advance of all possible environments and
does not need to design software for all of them. By implementing the
software using the object oriented paradigm, it is possible to implement new
entities as derived classes, thus inheriting the behaviours and the properties
of existing classes and developing only what is new.
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3. Conclusion and future work

We believe that our contribution consists in having designed a very sim-
ple yet effective abstraction and related model. We are currently designing
the software implementation of the proposed agent. We feel that by carefully
designing the decision table, i.e. Table I, it is possible to provide an agent
with a primitive level of “reasoning” and “judging”. Moreover, the granular-
ity of the decision table, i.e. the number of classes of distance and velocity,
may affect the goodness of the model. We will design the agent in such a
way that it can operate unchanged for different number of lanes and different
direction. We will test this design with several simulated experiments.
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