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It is common wisdom that no nation is an isolated economic island. All
nations participate in the global economy and are linked together through
trade and finance. Here, we analyze international trade network (ITN),
being the network of import–export relationships between countries. We
show that in each year over the analyzed period of 50 years (since 1950)
the network is a typical representative of the ensemble of maximally ran-
dom networks. Structural Hamiltonians characterizing binary and weighted
versions of ITN are formulated and discussed. In particular, given binary
representation of ITN (i.e. binary network of trade channels) we show that
the network of partnership in trade is well described by the configuration
model. We also show that in the weighted version of ITN, bilateral trade
volumes (i.e. directed connections which represent trade/money flows be-
tween countries) are only characterized by the product of the trading coun-
tries’ GDPs, like in the famous gravity model of trade.
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1. Introduction

In this contribution, we continue the analysis of structural properties of
the international trade network that has been initiated in Ref. [1]. Although
the new results given here are mainly related to binary network analysis of
ITN, the weighted network approach (as originally presented in [1]) is also
described for a clear exposition of the whole theory and for better reception
of ideas gathered in the last section entitled Discussion and perspectives.

Thus, in this paper, we study international trade [2,3,4,5,6,7,8,9] from a
complex network perspective [10,11,12,13,14]. The knowledge of topological
properties of this network and its evolution over time is not only important
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per se (e.g., because it enhances our descriptive knowledge of the stylized
facts pertaining to the ITN), but it may also be relevant to a better expla-
nation of macroeconomic dynamics [15, 16, 17]. In particular, it has been
suggested that the analysis of ITN may help in recognizing the pattern of
economic interdependencies responsible for the propagation of crises across
countries [18, 19, 20, 21, 22] and that it can be used to explain the role of
international trade in spurring the efficiency of economic recovery after re-
cession [23,24]. The approach to international trade described in this article
is a significant step towards clarifying the above-mentioned macroeconomic
issues.

We use quantitative and numerical (data-driven) methods originating
from statistical mechanics to describe the behavior of ITN. We analyze a set
of year-by-year trade relationships between all countries of the world, cover-
ing the time interval 1950–2000 [25]. Although the total number of countries
and the overall economic conditions influencing the network change over the
course of the period, in each year ITN is shown to be a typical represen-
tative of the ensemble in which every network, G, is assigned the probabil-
ity [26, 27] P (G) ∝ e−H(G), where H(G) plays the role of network struc-
tural Hamiltonian. The statement holds true for both: binary and weighted
versions of ITN. In the former case, the network Hamiltonian is given by
H(G) =

∑
i θ

(k)
i ki, where ki is the number of trade partners of a country i,

θ
(k)
i ∝ lnxi is the external parameter describing geopolitical conditions in-
fluencing international trade of this country, with xi corresponding to the
country’s GDP. In the later (i.e. weighted) case, we argue that the global
trade is described by H(G) =

∑
ij θ

(w)
ij wij , where wij represents the volume

of trade between two countries, i and j, with θ(w)
ij ∝ (xixj)−1 being the field

parameter conjugated to this trade connection and xixj corresponding to
the product of the GDPs of the trade partners.

In the following, we show that the two ensembles which describe struc-
tural properties of ITN are characterized by factorizable partition functions
that can be calculated exactly. We also argue that behind the descriptive
power of our approach (which is confirmed in a number of tests consisting
in comparison of GDP-driven Monte Carlo simulations of the trade network
with real data on ITN), it also reveals interesting predictive abilities, pro-
viding (as reported in [1]), through fluctuation-response theorems, valuable
insights into general rules governing time evolution of the global trade.

2. Statistical mechanics of networks

In the last decade, research on complex networks has become pervasive
in many disciplines, ranging from mathematics to the social, economic, and
biological sciences [14]. Network structures, different from regular lattices,
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have also attracted much interest in the community of physicists. Various
concepts of statistical physics have been used to understand how real-world
networks change over time, how this affects their structural properties, and
what the interplay is between their topology and dynamics. A number of
models have been proposed to embody the structural characteristics and to
explain the functional properties of the considered networks. The models
can roughly be divided into two classes: static (equilibrium) and evolving
(causal, non-equilibrium). The second class of causal networks encompasses,
in particular, the famous Barabási–Albert model [28], whereas exponential
random graphs [26], exploited in this study to analyze ITN, belong to the
first class of static networks.

Exponential random graphs are ensemble models. The methodology be-
hind the models directly follows that behind the maximum entropy school of
thermodynamics [29]. In order to correctly define an ensemble of networks,
one has to specify a set of networks, G = {G}, that one wants to study. Next,
one has to decide what constraints should be imposed on the ensemble. For
example, the constraints may be encouraged by the properties of real net-
works. (In our case they will be guided by the properties of ITN.) Then
one specifies probability distribution, P (G), over the ensemble, which con-
sists in maximization of the Shannon entropy, S = −

∑
G∈G P (G) lnP (G),

subject to the given constraints. The procedure leads to the Boltzmann-like
probability distribution

P (G) =
e−H(G)

Z
, (1)

where
Z =

∑
G∈G

e−H(G) (2)

stands for the partition function, whereas H(G) is called the network Hamil-
tonian.

In general, the network Hamiltonian can be written in the following form

H(G) =
∑
i

θiAi(G) , (3)

where {Ai(G)} represents the set of free parameters of the ensemble upon
which the relevant constraints act, and {θi} is the set of fields conjugated to
these parameters (like energy and the inverse temperature in the canonical
ensemble). The set {θi} completely determines average values of the free
parameters, {〈Ai〉}, which can be calculated as appropriate derivatives of
the partition function

〈Ai〉 =
∑
G∈G

Ai(G)P (G) = −∂ lnZ({θi})
∂θi

. (4)
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The well-known example of exponential labeled random graphs is the en-
semble of networks with a given sequence of expected degrees [26], {〈ki〉}. In
this ensemble, the set G consists of all simple graphs with a fixed number of
nodes, N . A simple graph has, at most, one undirected link between any pair
of vertices, and it does not contain self-loops connecting vertices to them-
selves. Such a graph is completely described by the symmetric adjacency
matrix, A, whose elements aij equal either 1 or 0, depending on whether
there is a connection between i and j or not. The network Hamiltonian
characterizing this ensemble can be written as

H(G) =
N∑
i=1

θ
(k)
i ki(G) =

∑
i<j

(
θ
(k)
i + θ

(k)
j

)
aij , (5)

where ki =
∑

j aij and the coefficients {θ(k)
i } represent a kind of hidden

variable (or fitness parameter) assigned to nodes [30, 31]. (In what follows,
since it does not result in confusion, we will write θi instead of θ(k)

i .) The
partition function of the model is given by

Z({θi}) =
∏
i<j

(
1 + e−(θi+θj)

)
. (6)

For the analysis performed in subsequent sections of this article, it is signif-
icant that Eq. (6) allows one to rewrite the probability of a network in the
considered ensemble, i.e. Eq. (1), in the following form

P (G) =
∏
i<j

p
aij

ij (1− pij)1−aij , (7)

where

pij =
e−(θi+θj)

1 + e−(θi+θj)
. (8)

This, in turn, enables one to identify pij with the probability that nodes i
and j are connected.

3. Hamiltonian of the international trade network

3.1. Data used and notation

The results reported in this work are based on the empirical analysis of
expanded trade data collected by Gleditsch [25]. The data set [32] contains,
for each world country in the period 1950–2000, the detailed list of bilat-
eral import and export volumes. The data on the population size of each
country and its GDP per capita has been taken from the Penn World Tables
(PWT) [33].
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The trade data are employed to build a sequence of matrices, W (t), cor-
responding to snapshots of weighted directed ITN in the consecutive years,
t = 1950, . . . , 2000. In the network, each country is represented by a node
and the direction of links follows that of wealth flow. The entry, wij(t), of
the trade matrix, W (t), represents the weight of the directed connection.
From the point of view of the country denoted by i, wij(t) refers to the
volume of export to j, while, from the point of view of the country labeled
by j, it is seen as the volume of import from i. Precisely due to differences in
reporting procedures between countries, when analyzing the data one often
encounters small deviations between exports from i to j and imports from
i to j. To overcome the problem, in our analysis we define wij(t) as the
arithmetic average of the two values.

In this article, apart from trade matrices, which contain complete but
often excessively detailed information about ITN, we also use several other
quantities that make theoretical description of the network possible. In
particular, to characterize the economic performance of a country we use
its total GDP value, xi(t). To get the whole set of total GDPs, {xi(t)}, we
simply multiply the GDP per capita by the population size of each country.
Furthermore, to describe the intensity of the trade relationships of a country
we define the so-called out-strength, sout

i (t), and in-strength, sini (t), of the
corresponding node [34]. The quantities are calculated as the total weight of
connections (outgoing and incoming, respectively) that are attached to the
node, i.e.

sout
i (t) =

∑
j

wij(t) and sini (t) =
∑
j

wji(t) , (9)

and they represent total volumes of export and import of the considered
country in a given year, t.

Finally, we would like to stress that both GDP data, {xi(t)}, and trade
matrices, W (t), used in this study are given in millions of contemporary
U.S. dollars (that is, in terms of the value of one U.S. dollar in the reported
year, t). To factor out the effects of inflation and to allow for a direct com-
parison between snapshots of ITN in different years, one usually expresses
the data in standard reference money units (e.g. in 1996 U.S. dollars [23]).
In our approach, however, the disturbing effects mentioned are ruled out in
a natural way by the fact that whenever the variables, xi(t) or wij(t), are
used in the calculations, they are intrinsically divided by the normalization
constant that equals the sum of all variables of a given type, i.e.

∑
i xi(t) or∑

i,j wij(t), respectively. (In what follows, whenever there is no confusion we
will often omit explicit time dependence of the quantities.) As a byproduct,
the above observation allows one to present the main results of this article
in a very concise way, with the help of relative quantities defined as follows
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ξi =
xi
X
, σ

(...)
i =

s
(...)
i

T
and vij =

wij
T

, (10)

where X stands for the sum of the total GDPs of all the countries, whereas
T represents the world’s trade volume (see Fig. 1), i.e.

X =
∑
i

xi and T =
∑
i,j

wij . (11)
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Fig. 1. Global economic indicators characterizing temporal evolution of ITN.
(a) Global GDP, Eq. (11), versus time. (b) World’s trade volume, Eq. (11), versus
time. Filled and open squares in panels (a) and (b) correspond to values of X
and T expressed in current and 1996 U.S. dollars, respectively. In both panels,
crosses represent the number of world countries versus time. The vertical dashed
lines in the figure mark two years, 1975 and 1995, whose trade characteristics are
used in Figs. 2 and 3 to illustrate topological properties of ITN.

3.2. Binary network approach

The first contributions dealing with international trade from a complex
network perspective used a binary-network approach, in which one has as-
sumed that a (possibly directed) link between any two countries is either
present or not, depending on whether the trade volume that it carries is
larger than a given threshold [2, 3, 4].

With reference to this line of research we would like to highlight the
paper by Garlaschelli and Loffredo [4]. In the paper, the authors used the
same real-world data to analyze an unweighted and undirected version of
ITN, i.e. a network of partnership in trade. They have shown that the total
GDP of a country, xi, can be identified with the fitness variable [30] that,
once a form of the probability of trade connection between two countries is
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introduced, completely determines the expected structural properties of this
network. The assumed expression for the probability was given as follows

pij =
δxixj

1 + δxixj
, (12)

where the parameter δ > 0 only depends on the total number of the world’s
trade channels. The value of δ can be estimated from the relation below (see
also Fig. 3b in [5])

L '
∑
i>j

pij , (13)

where L = (
∑

i ki)/2 represents the total number of trade channels in a
given snapshot of ITN, while ki is the number of trade partners of a country.
Remarkably, Eq. (12) allows the creation of a statistical ensemble of networks
whose average structural properties are in complete agreement with the ones
observed in binary representation of ITN (cf. Figs. 2, 3 in [4], and 4, 5 in [23]).

Given the explicit expression for the probability that two countries trade
goods with each other, it is interesting to note that this probability, i.e.
Eq. (12), has the identical form as the corresponding probability in the
ensemble of networks with a given degree sequence, cf. Eq. (8). This in
turn implies that ITN viewed as a simple graph is characterized by the well-
known network Hamiltonian, Eq. (5), which, when written in the variables
specific for trade, takes the form

H(G) = −
N∑
i=1

ln
(
xi
√
δ
)
ki = −

N∑
i=1

ln(xi)ki − ln(δ)L . (14)

Now, from the perspective of exponential random graphs, ITN appears
to be a network in which every country tries to keep an optimal (from its own
viewpoint) number of trade connections. However, using Eq. (4), one can
show that the expected connectivity of a node, 〈ki〉 =

∑
j pij , does not only

depend on xi, i.e. on the country itself. It also depends on global economic
performance, which is expressed by the parameter δ, and also on the GDPs
of other countries.

3.3. Weighted network analysis

Since ITN viewed as a binary network is a typical representative of expo-
nential random graphs characterized by a well-defined Hamiltonian, one can
expect that the same holds true for the weighted version of the network. To
verify this conjecture, we start by considering the most general ensemble of
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directed weighted networks, which is described by the following Hamiltonian

H(G) =
∑
i

∑
j 6=i

θ
(w)
ij wij , (15)

with a separate parameter θ
(w)
ij coupling to each weighted connection.

(In what follows, we will write θij instead of θ(w)
ij .) Our aim is to check

whether the Hamiltonian is correct and, if so, how the parameters {θij} de-
pend on different indicators characterizing the global economy. In order to
do this, we first examine the ensemble as it stands.

Thus, given that wij is a real number greater than 0 (as is true for trade
volumes), the partition function, Eq. (2), of this ensemble can be written as

Z({θij}) =
∏
i

∏
j 6=i

∞∫
0

e−θijwijdwij =
∏
i

∏
j 6=i

1
θij

. (16)

This allows us to rewrite the probability of a network, Eq. (1), in a way
similar to what has been done in the case of undirected binary networks
with an expected degree sequence, i.e.

P (G) =
∏
i

∏
j 6=i

pij(wij) , (17)

where
pij(wij) = e−θijwijθij (18)

is the probability that there is a directed link of weight wij from i to j. The
expression for pij(wij) that we arrive at is the exponential distribution. Its
mean value, that is given by

〈wij〉 =
1
θij

, (19)

can be used to calculate the average values of a node’s out- and in-strength〈
sout
i

〉
=
∑
j 6=i
〈wij〉 =

∑
j 6=i

1
θij

and
〈
sini
〉

=
∑
j 6=i

1
θji

. (20)

At this stage one can start to make comparisons of theoretical predictions
with the empirical data on international trade. With good reason, it is
convenient to begin by putting together Eq. (20) and the corresponding
empirical relations (see Fig. 2 (a) and (b))〈

sout
i

〉
= Axi and

〈
sini
〉

= Axi , (21)
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where A is the time-dependent parameter having the same value for both
out- and in-strength of the nodes. Analyzing the expressions, one finds that
the simplest way to merge the theoretical approach with real data is to
assume a multiplicative form of the parameter θij , i.e.

θij = θiθj , (22)

where θi and θj represent some single-node characteristics controlling for the
potential ability of the two nodes to be connected. One should note that
the symmetric expression for θij , Eq. (22), is consistent with observations
made by other authors, showing the symmetric character of bilateral trade
relations [35].

To calculate explicit values of all the parameters {θi}, one just has to
insert Eq. (22) into the theoretical formula for 〈sout

i 〉, Eq. (20), and then
equate the obtained relation to the empirical one, Eq. (21). (The analogous
calculations can be done for 〈sini 〉.) As a result, one gets the expression〈

sout
i

〉
=

1
θi

∑
j

1
θj

= Axi , (23)

which, when summed over i, yields an important relation between theoretical
and empirical quantities describing ITN, i.e.

T =

(∑
i

1
θi

)2

= AX , (24)

from which it follows that

θi =
1√
T

X

xi
=

1√
T

1
ξi
, (25)

and
θij =

1
T

1
ξiξj

, (26)

where the relative quantity ξi has been introduced earlier, in Eq. (10).
The two expressions, Eqs. (25) and (26), together with other relative

parameters that were defined in Eq. (10), can be used to rewrite the most
important results of this section in a very concise way. In particular, as
described in terms of trade, the average out- and in-strength of a node,
Eq. (20), when divided by the world’s trade volume T turns out to be equal
to the country’s share in the world’s GDP, i.e.〈

σout
i

〉
=
〈
σin
i

〉
= ξi . (27)
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Fig. 2. Weighted network approach. Structural properties of two different snap-
shots of ITN. (The left column refers to the year 1975, while the right column to
the year 1995. The data are shown in two ways, by using regular and relative
quantities, cf. Eq. (10).) (a), (b) Total import and export volumes of all world
countries in a given year versus GDP (filled and open points, respectively) and
their comparison with the expected values described by Eqs. (21) and (27) (solid
lines). (c), (d) Bilateral trade flows versus the product of the trading countries’
GDPs (points) as compared with their theoretical prediction based on Eqs. (19)
and (28) (lines). Black points correspond to real data, while gray points represent
trade volumes obtained from GDP-driven Monte Carlo simulations. Since trade
flows smaller than a given threshold are rarely specified in economic reports (in
particular, the considered data set [32] does not contain trade volumes smaller
than 1000 USD), the clouds of black points cover smaller areas than the ones cor-
responding to numerical simulations. The effect of unreported exports/imports is
also perceptible in the insets of both panels, which show the relationship between
the average trade volume and the product of GDPs obtained with logarithmic bin-
ning of the latter. In the insets, points represent real data, while the solid lines
stand for their theoretical prediction.
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In a similar fashion, the average weight of a directed connection when divided
by T , is given by

〈vij〉 = ξiξj . (28)

Finally, the structural network Hamiltonian, Eq. (15), when written in rel-
ative variables has the following form

H(G) =
∑
i

∑
j 6=i

θ∗ijvij , (29)

where
θ∗ij =

1
ξiξj

=
1
〈vij〉

. (30)

3.4. GDP-driven Monte Carlo simulations

To verify the correctness of the assumed network Hamiltonians, i.e.
Eqs. (15) and (29), a series of data-driven Monte Carlo simulations em-
ploying the Metropolis algorithm has been performed. The obtained results
are shown in Figs. 2 and 3.
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Fig. 3. Weighted network approach. Distributions of trade volumes. The left panel
(a) refers to the year 1975, while the right one (b) to the year 1995. Filled and
open squares correspond to real and simulated data, respectively. The solid lines
represent distributions of expected trade flows which, for each pair of countries in
a given year, can be calculated using Eqs. (19) or (28).

In particular, in Fig. 2 (c) and (d), the set of all bilateral trade volumes
recorded in a given year versus the product of the trading countries’ GDPs is
compared with the corresponding set of weights of directed connections in a
typical network of the considered ensemble. Although the two sets (clouds)
of points are quite dispersed, they overlap significantly, and their shape
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is well-described by Eq. (28). Moreover, as shown in Fig. 3 (a) and (b),
the distributions of trade volumes within these clouds fit very well with
each other and agree with the distribution of expected trade flows, P (〈vij〉),
testifying in favor of our simple, yet realistic, approach.

4. Discussion and perspectives

4.1. Quasi-static time evolution of ITN and susceptibility
of bilateral trade relations

Extensive comparisons between real data on international trade and its
GDP-driven Monte Carlo simulations show that, although the total number
of world’s countries, N(t), and their GDPs, {xi(t)}, change over the analyzed
period of 50 years (cf. Fig. 1), ITN is continuously well-characterized by the
same structural Hamiltonians. This means that the time evolution of this
network may be considered as a continuous sequence of equilibrium states
(i.e. quasi-static process) that is yearly sampled by the national reporting
procedures. Furthermore, since differences between snapshots of ITN in
the consecutive years are rather small, one can expect that they could be
described with the help of linear response theory, of which the simplest
(but not yet trivial) result is the fluctuation-response theorem applying to
equilibrium ensembles.

In the weighted case of ITN characterized by the Hamiltonian given by
Eq. (29) the fluctuation-response theorem can be written in the following
form

d〈vij〉
〈vij〉

=
dξi
ξi

+
dξj
ξj

, (31)

from which it follows that relative changes in normalized (i.e. divided by T )
bilateral trade volumes can be estimated on the basis of changes in the GDP
of trade partners. Yearly changes in import/export volumes between differ-
ent countries prove that the fluctuation-response theorem for ITN derived
in this section is correct [1].

Relying on Eq. (31) one can, for example, expect that a decline of, say,
2 percent in the relative GDP of a country, given that its trade partners do
not change their share of the world’s GDP, will translate into a similar decline
in all its bilateral trade volumes. The example shows that the theorem can
be used to make simple predictions about the world-wide diffusion of trade-
based economic perturbations.
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4.2. Gravity model of trade

Inspired by Newton’s gravity equation, the gravity model of trade [36,37,
38,39] states that the volume of trade between two countries is proportional
to the product of the sizes of the two countries (e.g. their GDP) and the
inverse of the distance between them, i.e.

wij ∝
xixj
rij

. (32)

Comparing the above expression with Eq. (28), which arises from our treat-
ment of ITN, one finds a close correspondence between the two. Even
though the correspondence exposes possible shortcomings of our approach
(stemming from the lack of dependence of trade on distance) we use it to
highlight the advantages resulting from using exponential random graphs to
study ITN, as compared with the famous econometric model of trade.

To begin with, one should note that the gravity model is an ad hoc
method based on empirical reasoning and conventions, rather than a thor-
ough theoretical discussion. Unlike the econometric treatment, in view of our
approach (originating from statistical mechanics) the observed properties of
ITN arise from an optimization process (equivalent to the maximization of
entropy), in which every country tries to optimize its trade channels. The
fluctuation-response theorem, Eq. (31), which follows from our approach,
also results from this process, whose details are not known. In conclusion,
one should stress that it is impossible to derive the theorem from economet-
ric analysis.

4.3. Partition function of ITN

It is interesting to note that the partition function characterizing ITN,
Eq. (16), can be written as a product of separate partition functions associ-
ated with each country, i.e.

Z({ξi}, T ) =
∏
i

(
1
T

1
ξ2i

)N−1

=
∏
i

Zi(ξi, T ) , (33)

where we have used Eq. (26). (In the binary version of ITN, the factoriz-
ability of the partition function holds true as well.) The factorizability of
the partition function characterizing international trade implies that, when
considered from the perspective of only trade linkages, the countries are inde-
pendent, which, in turn, suggests that perturbations in international trade
are unlikely to trigger big disruptions at the level of the global economy.
Although theoretically reasonable, the intriguing findings are not correct
enough. They would be correct if the values of GDP were independent of
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trade and given a priori, as we take them in our approach. However, since,
in general, a trade surplus (deficit) translates into GDP growth (decline)
there is feedback between trade volume and GDP that causes the observed
factorizability to lose its recognized meaning.

4.4. Perspectives

Having the mathematically tractable yet realistic model of ITN intro-
duced here, and given the quasi-static time evolution of this network, we
believe that, apart from the fluctuation-response theorem, Eq. (31), other
well-known results of non-equilibrium statistical physics [40] may be applied
to estimate recession (or economic growth) impact on international trade.

This work was supported by the Polish Ministry of Science and Higher
Education, Grant No. 496/N-COST/2009/0.
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