
Vol. 5 (2012) Acta Physica Polonica B Proceedings Supplement No 1

ROTOR-ROUTING ALGORITHMS
DESCRIBED BY CA-w ∗

Rolf Hoffmann

Technische Universität Darmstadt, FG Rechnerarchitektur
Hochschulstr. 10, 64289 Darmstadt, Germany
hoffmann@ra.informatik.tu-darmstadt.de

(Received November 20, 2011)

The GCA-w model (Global Cellular Automata with write access) is an
extension of the GCA (Global Cellular Automata) model, which is based on
the cellular automata model (CA). Whereas the CA model uses static links
to local neighbors, the GCA model uses dynamic links to potentially global
neighbors. The GCA-w model is a further extension that allows modifying
the neighbors’ states. Thereby neighbors can dynamically be activated or
deactivated. Algorithms can be described more concisely and may execute
more efficiently because redundant computations can be avoided. If the
neighborhood of the GCA-w model is locally restricted, we will call the
model “CA-w” (Cellular Automata with Write-access). Rotor-routing algo-
rithms are good examples showing the usefulness of the CA-w model. The
Propp-machine and the Chip-firing problem are first described by CA for
comparison, and then by CA-w. It is shown that the CA-w descriptions are
more concise, more “natural” compared to the CA descriptions, and more
power saving because only the active cells have to be computed.

DOI:10.5506/APhysPolBSupp.5.53
PACS numbers: 87.17.Aa, 92.60.hk, 87.18.Hf

1. Introduction

The GCA-w parallel computing model (GCA with write-access) intro-
duced in [1, 2] is an extension of the GCA (Global Cellular Automata)
model [3], which in turn is an extension of the CA model. A cell of a
GCA can dynamically establish links to any of its global neighbors, whereas
a cell of a CA uses only the fixed links to its local neighbors. The CA and
the GCA model do not allow modifying the state of a neighbor. Therefore
no write-conflict can occur, simplifying implementations in hardware or in
software. However for applications, where the amount of active cells in the

∗ Presented at the Summer Solstice 2011 International Conference on Discrete Models
of Complex Systems, Turku, Finland, June 6–10, 2011.

(53)

54 R. Hoffmann

whole field is low or is varying over time, or the locations of the active cells
are changing, the GCA-w model is a better choice. The GCA-w model al-
lows writing information to its neighbors. This feature is very important
because information can actively be transferred to a destination, and the
activity of the destination can be switched on or off. Therefore, the GCA-w
model is very useful for the description of problems with moving particles
or moving agents, or problems with dynamic activities.

Several GCA-w applications were already described in [1,2,8] (one-to-all
communication, synchronization, moving agents, different random walks of
particles, pointer inversion, sorting with pointers, Pascal’s Triangle, traffic
simulation). The purpose of this contribution is to show two other prac-
tical applications that can easily be implemented. The two problems are
related because they are using the rotor-routing principle, meaning that a
rotor (pointer) as part of the cell defines the direction of the particle move-
ment. Furthermore the two problems are using only a local neighborhood, so
particles can only be pushed from a cell to its nearest neighbors. If the GCA-
w model is restricted to local neighbors it will be called “CA-w” (Cellular
Automata with write access).

The two problems are the Propp-machine with one agent [9, 10] and
the chip-firing problem [11, 12]. It will be shown that these problems can
easier be modeled and more efficiently be executed using the CA-w model
compared to the CA model. These problems are perfectly suited to the
CA-w model because (i) the particles decide on their own upon their next
location, (ii) possible conflicts are easily resolved because the number of
received particles is simply summed up, and (iii) cells which do not contain
particles are excluded from the computation.

1.1. GCA-w model

Fig. 1 shows the general idea of the GCA-w model: Each cell C is dy-
namically connected via links (also called hands1) hi to other cells, in the
example to A,B,D. Cell C updates its own state and the states of its neigh-
bors A,B,D. Thereby the links hi are also updated. In the following, only
one link per cell is assumed, which seems to be sufficient to model most ap-
plications. In addition, in the following, the cells will be arranged in a 1-D
fashion, although n-D fields can easily be handled by using an n-D indexing
scheme.

A potential difficulty is that write-conflicts may appear. The worst case
scenario is that all cells want to write onto the same cell. In order to reduce
the implementation effort to resolve the conflicts, the GCA-w rules should

1 If k access pointers are used, then we call the GCA-w “k-handed”; this terminology
was already used for the GCA model [3].

Rotor-routing Algorithms Described by CA-w 55

Fig. 1. A 2-D GCA-w example with three links per cell: Each cell is dynamically
connected to a global (or locally restricted) set of neighbors (grey), only the activity
of the centre cell C is shown. The state of C including the links hi, and the states of
its neighbors can be changed (grey to black) by a local rule. Thereby information
can be transferred from C to the current neighbors A,B,D, and the activity of the
neighbors may be changed. Write conflicts may occur, e.g. if C itself and other
cells try to update C at the same time.

be designed in such a way that either no conflict will occur (which is the
case for the first application, Sec. 2), or that the amount of conflicts is low or
restricted, or that the conflicts can be resolved within a local neighborhood
(which is the case for the second application, Sec. 3).

Global Cellular Automata with Write Access:
GCA-w= (I,Q, δ, h, f, g, e) (1)

Index Set, unique labels identifying the cells:
I = {0, 1, . . . , i, . . . ,N − 1} (2)

States: Q = A ∪ P ∪D (3)

Active States: A = {a1, a2, . . . , an} (4)

Passive States: P = {p1, p2, . . . , pm} (5)

Dead States: D = {d1, d2, . . . , dk} (6)

Don’t – Write – Symbol: δ

Write – Values: Qδ = Q ∪ {δ} (7)

Configurations: QN (8)

A Configuration: L = (q0, q1, . . . , qi, . . . , qN−1) ∈ QN , i ∈ I (9)

Neighbor’s Address (in the case of absolute addressing) h(i, q):
h : I ×Q→ I (10)

56 R. Hoffmann

Neighbor’s Address (in the case of relative addressing) hrel(i, q):
hrel : I ×Q→ Irel = {0,±1,±2, . . . ,±(N − 1)} (11)

such that h(i, q) = i+ hrel
2 (12)

Local – Rule f(i, q, q∗), where q∗ = neighbor’s state:
f : I ×Q×Q→ Qδ (13)

Write – Rule g(i, q, q∗):
g : I ×Q×Q→ Qδ (14)

Conflict – Rule e
(
i, f, g0, g1, . . . , gj , . . . , gN−1

)
:

e : I ×QN+1
δ → Qδ (15)

Rule Application (Synchronous Updating) ∀i ∈ I:

qi←

e
(
i, f
(
i, qi, qh(i,qi)

)
, g0
→i, .., g

j
→i, .., g

N−1
→i

)
IF qi ∈ A ∧ e 6= δ (16)

qi IF qi ∈ D ∨ e = δ (17)

e
(
i, δ, g0

→i, . . . , g
j=i
→i = δ, . . . , gN−1

→i

)
IF qi ∈ P ∧ e 6= δ , (18)

where ∀(i, j) ∈ I × I:

gj→i=

g
(
j, qj , qh(j,qj)

)
IF h(j, qj) = i ∧ qj ∈ A (19)

δ IF h(j, qj) 6= i ∨ qj /∈ A . (20)

The cells are arranged as a sequence 〈ai〉i∈I of cells, each cell is labeled
by its index i (1). The index can also be accessed by the the cell itself in
order to implement non-uniform rules. A cell can be in an active state (4),
or in a passive/inactive state (5), or in a dead-state (6). These three classes
of states are also called operational states. Operational states are introduced
in order to switch on or off the activity of the cells, and thereby allowing
to reduce the computational effort (dead cells are totally excluded from the
computation because they remain dead forever, passive cells do not compute
themselves but can be activated by other cells). In addition, passive or dead
cells can be used to define a termination condition, e.g. if all cells are dead,
or if all cells are passive.

If a cell is active, it computes all the local functions h, f, g, e. If a cell
is passive, it does not compute its local functions h, f, g, but it can be
switched into another operational state from outside, e.g., it can be changed
into active. If a cell is dead, it will stay dead forever (it can be used as a
constant).

2 All addresses are mapped onto the interval 0..N−1 by the modulo operation mod N .

Rotor-routing Algorithms Described by CA-w 57

The symbol delta (“Don’t – Write”) is a special output value of the func-
tions f , g, and e. As a possible input of the conflict rule e it signals that no
valid value is received from another cell for writing. In the case when the
conflict rule does not receive any valid input (6= δ), it produces δ, too. Then
the cell’s state will remain unchanged.

The address function h defines the actual neighbor (absolute address,
index) in access (read and write) (10). The neighbor’s address can also be
determined by the use of the relative addressing function hrel (11). Relative
addressing is often more adequate and more general to describe spatial rela-
tive situations. The local rule f computes the cell’s new state if no neighbor
is writing additionally. The write-rule computes a state value that can be
written to the actual neighbor. The conflict-rule is dedicated to resolve the
conflicts. It receives N + 1 messages (write-values), the own rule value f
and messages gj→i from all cells j. Not all messages need to be activating: A
non-activating δ-message is interpreted as a Don’t – Write-command, mean-
ing that a sender j does not want to write to a receiver i. A message is
activating if the sender j is active and the receiver i is selected (18). (As
a special case, g may produce δ; also f may produce δ.) If the sender is
passive or the receiver is not selected, then δ is received.

Rule Application. All cells are updated synchronously in parallel. Only
cells that are not dead need to be updated. If the cell is active (16) then
the own rule value f and the messages gj→i from all cells j have to be taken
into account. In the case that a δ-message (don’t – write) is received, it
is disregarded by the conflict rule e. If the cell is passive (18) then no
computation of h, f, g takes place and the default values f = δ and g = δ
are assumed, and no neighbor is selected. Although the cell is passive, the
conflict-rule has to be awake because there might arrive activating messages.

At a first glance the GCA-w model seems to be too complex because of
the conflicts and not very useful.

But in many applications the complexity of the conflict resolution can be
reduced significantly, e.g. if the dynamic neighborhood access patterns are
restricted or are known in advance, or if the rules are Exclusive-Write (as the
algorithm in Sec. 2), or if the conflict resolution corresponds to a reduction
operator (summing up the inputs as in the algorithm to be given in Sec. 3).
The main advantage of the GCA-w model is that it allows to describe a
certain class of algorithms more natural and concise, less redundant and
energy saving (only the active cells are computing). The novel idea is to
organize the computational task logically as an array of cells with different
operational states (active, passive, dead) with write-access onto dynamically
selected neighbors by the use of local rules only.

58 R. Hoffmann

1.2. CA-w model

We will call the GCA-w model “CA-w” (Cellular Automata with write
access) if the neighborhood is locally restricted. As in the GCA-w model
the CA-w model may use k “hands” to access k neighbors in parallel, then
we call the CA-w k-handed. Each hand can read from and/or write to a
dynamically selected neighbor. Many applications can be described with
one hand only. The formal description of an 1-D CA-w with one hand is the
following (only the formulas differing from the ones in Sec. 1.1 are given):

Cellular Automata with Write Access:
GCA-w= (I,Q, δ, h, f, g, e) (1)

Neighbor’s Address (in the case of absolute addressing) h(i, q):
h : I ×Q→ I, (i−R) ≤ h′ ≤ (i+R), h = h′ mod N (10)

Neighbor’s Address (in the case of relative addressing) hrel(i, q):
hrel : I ×Q→ Irel = {0,±1,±2, . . . ,±R} (11)
such that h(i, q) = (i+ hrel) mod N (12)

Conflict – Rule e
(
i, f, gi−R, . . . , gi−1, gi, gi+1, . . . , gi+R

)
:

e : I ×Q2R+1
δ → Qδ (15)

Rule Application (Synchronous Updating) ∀i ∈ I:

qi :=

e
(
i, f
(
i, qi, qh(i,qi)

)
, gi−R→i , . . . , g

i+R
→i

)
IF qi ∈ A ∧ e 6= δ (16)

qi IF qi ∈ D ∨ e=δ (17)

e
(
i, δ, gi−R→i , . . . , g

j=i
→i = δ, . . . , gi+R→i

)
IF qi ∈ P ∧ e 6= δ . (18)

The neighbors address lies within the radius R (10, 11). Inputs of
the conflict rule (15) are the own function f and the possible messages
gi−R, . . . , gi+R from the neighbors. The next state qi at time t + 1 is given
by the output of e (16, 17, 18).

A more specific 1-D case (as an example, see Fig. 2): The radius is
R = 1 and only the left neighbor (i− 1) or the right neighbor (i+ 1) can be
addressed. (The access to the own cell i is excluded here because the own
state is available through the function f .) Then the definition simplifies to

Conflict – Rule e
(
i, f, gi−1, gi+1

)
:

e : I ×Q3
δ → Qδ (15)

Rule Application (Synchronous Updating) ∀i ∈ I:

Rotor-routing Algorithms Described by CA-w 59

qi :=

e
(
i, f
(
i, qi, qh(i,qi)

)
, gi−1
→i , g

i+1
→i
)

IF qi ∈ A ∧ e 6= δ (16)

qi IF qi ∈ D ∨ e = δ (17)

e
(
i, δ, gi−1

→i , g
i+1
→i
)

IF qi ∈ P ∧ e 6= δ . (18)

Now there only three inputs of the conflict rule: f (own function), gi−1
→i

(message from left neighbor), and gi+1
→i (message from right neighbor).

h

address neighbor

read from neighbor

write to neighbor

eee

f

compute
neighbor

compute f, g

conflict
resolution

state

next state

gi-1 gi+1
g

h

address neighbor

read from neighbor

write to neighbor

eee

f

compute
neighbor

compute f, g

conflict
resolution

state

next state

gi-1 gi+1
g

Fig. 2. 1-D CA-w model with one hand. The right neighbor is selected in this
example. The functions f, g are computed, the value g is send to the right neighbor.
The centre cell receives from the left gi−1, and from the right gi+1. These messages
are taken into account by the conflict resolution function e.

1.3. Related work

The PSA (Parallel Substitution Algorithm) model [4] of computation is
a very general and powerful model based on substitution rules. It allows
also modifying the state of arbitrary target cells (right side of the substi-
tution) using a “base” and a “context”. In relation to the GCA-w the base
corresponds to the cell under consideration, the context corresponds to the
read neighbors and the right side corresponds to the cells which are modi-
fied. There is also a relation to the CRCW-PRAM [5,6] model. The PRAM
model is based on a physical view with p processors that have global memory
access to physical data words whereas the GCA-w is based on logical com-
puting cells tailored to the application. Another difference of the GCA-w
model compared to PRAM is the direct support of dynamic links and the
rule based approach similar to the CA model.

60 R. Hoffmann

Jim Propp’s machine, also known as the “Propp-machine” or “rotor-
router model”, is a deterministic process that simulates a random walk on
a graph [9, 10, 11, 12]. Instead of distributing a chip to a randomly chosen
neighbor, the neighbor is determined by a rotor that is rotated after the
movement in a fixed cyclic order. Several interesting theoretical results can
be obtained by analyzing this deterministic process, and by comparing it
to a true random walk. The purpose of this paper is not to analyze rotor-
routing algorithms but rather to show that it is another application showing
the usefulness of the CA-w model.

2. Rotor-routing with 1 agent

As a first example for a simple rotor-routing algorithm we will model the
following problem by CA (for comparison) and by CA-w.

Given is a two-dimensional field of cells with cyclic boundaries. Exactly
one agent is situated on one of the cells. Each cells contains a rotor (pointer)
pointing to one of the nearest neighbors N, E, S, W. Then the agent reads
the rotor’s direction and moves to the neighboring cell defined by this direc-
tion. When the agents moves it rotates the rotor according to a given cyclic
sequence, e.g. (toN, toW, toE, toS) = (↑,→,←, ↓).

2.1. CA model

The following algorithm describes the rotor-routing with one agent by
CA. Each cell contains a rotor and an agent. If an agent is situated on a cell
then agent=ACTIVE else agent=PASSIVE. Note that in CA all cells are
computing their new state, even if agent=PASSIVE. The nearest neighbors
are defined in lines (04, 05). (The equivalences (04–07) can be considered
to be substituted in the code thereafter.) Initially one agent is placed in the
middle, all rotors point to ↑(08–12). As the field is a vertex-transitive Caylay
graph, the view from each cell is the same, any position can be interpreted
as the “middle”. If a neighboring cell contains an agent and its rotor point to
my cell C[x, y], then my agent becomes active (14–19). If my cell contains an
agent (myagent=ACTIVE) then it is passivated and the rotor is rotated. If
the rotor sequence is chosen as Rotate(i)= i+ 1modm (clockwise rotation)
then the agent’s movements are given by the sequence

↑m, [(→, ↑m)m−1,→, (↓,→m)m−1, ↓, (←, ↓m)m−1,←, (↑,←m)m−1, ↑]∗ .

In the start-up phase the agent moves m steps to ↑, Fig. 3, generation 0
to 10. Then a cyclic period of 4×m2 generations begins, Fig. 3, generation
10 to 410. Between generation 110 and 210 the agent moves (one step to
→, then m steps to ↑) repeatedly for m− 1 times until it reaches the start

Rotor-routing Algorithms Described by CA-w 61

position again. Then the same behavior can be observed, but 90◦ clockwise
rotated, and so on until the whole period ends. During this period all cells
are visited 4 times, and each link (4 for each node) is traversed exactly once.
Thus the agent performs a walk on a Hamiltonian cycle during each period.

Fig. 3. Rotor-routing with one agent for a 10 × 10 field. Initially all rotors point
toN. After 10 movements toN the agent is again in the middle, the rotors of the
middle line are rotated toE. Then the agent moves one step toE. Between generation
10 and generation 410 each of the 4m links between the nodes is traversed once
(Hamiltonian path), and each node is visited 4 times.

The process can also be started with a random rotor direction for each
cell. Then, after a start-up phase of k < m2 generations (k depending on the
actual initial configuration), each cell will be visited 4 times during a period
of 4×m2 generations, and each of the 4×m2 links will be visited once. For
an example simulation the start-up phase took k = 239 generations for a
10 × 10 field. Such a process can be used to simulate a random walk in a
deterministic way.

00 agent : (PASSIVE, ACTIVE)
01 rotor : (toN, toE, toS, toW) = (0, 1, 2, 3)
02 cell = (rotor, agent)
03 C = ARRAY [0 .. m-1, 0 .. m-1] OF cell

// equivalences, neighbors N E S W; addition/subtraction modulo m
04 N <=> C[x, y-1]; E <=> C[x+1, y];

62 R. Hoffmann

05 S <=> C[x, y+1]; W <=> C[x-1, y];

06 myagent <=> C[x,y].agent // own agent of centre cell
07 myrotor <=> C[x,y].rotor // own rotor

// initially one agent placed in the middle, all rotors point toN
08 PARALLEL C[x, y]
09 myrotor := toN
10 IF (x = n div 2) AND (y = n div 2)
11 THEN myagent := ACTIVE ELSE myagent := PASSIVE ENDIF
12 ENDPARALLEL

// moving of the agent to the neighbor the rotor is pointing to
13 PARALLEL C[x, y]

// case empty: if a neighbor is an active agent and points to me then copy
14 IF myagent = PASSIVE
15 THEN IF (N.agent = ACTIVE) AND N.rotor = toS) OR
16 (E.agent = ACTIVE) AND E.rotor = toW) OR
17 (S.agent = ACTIVE) AND S.rotor = toN) OR
18 (W.agent = ACTIVE) AND W.rotor = toE)
19 THEN myagent <- ACTIVE ELSE myagent <- PASSIVE ENDIF ENDIF

// case agent: agent deletes itself when it is moving
20 IF myagent = ACTIVE
21 THEN myagent <- PASSIVE
22 myrotor <- Rotate(myrotor) ENDIF // rotate own pointer
23 ENDPARALLEL

2.2. CA-w model

The following pseudo-code for the same problem modelled by CA-w is
several lines shorter. Whereas the CA description (main part) needs 11 lines
(13–23) the CA-w description needs only 5 lines (13–17). The CA-w algo-
rithm is computed only once for the active agent, whereas the CA algorithm
is computed for all cells (for this application, the CA computation can also
be optimized by computing only the agent and its 4 neighbors). The CA-w
algorithm is more appropriate if you think that the agent is the active part
of the system only. In contrast, the CA algorithm is more artificial because
the movement is described by two rules: the sending cell deletes the agent
and the receiving cell copies the agent. So in the CA model the activity is
not concentrated in the agent but distributed over the involved cells around
the agent.

00 agent : (PASSIVE, ACTIVE)
01 rotor : (toN, toE, toS, toW) = (0, 1, 2, 3)
02 rotx : array [0 .. 3] = 0, 1, 0,-1
03 roty : array [0 .. 3] = -1, 0, 1, 0
04 cell = (rotor, agent)
05 C = ARRAY [0..m-1, 0..m-1] OF cell

06 myagent <=> C[x,y].agent // own agent of centre cell
07 myrotor <=> C[x,y].rotor // own rotor

Rotor-routing Algorithms Described by CA-w 63

08-12 // initial configuration is the same as in the above CA algorithm

// moving of the agent to the neighbor the rotor is pointing to
13 PARALLEL C[x, y] WHERE agent = ACTIVE // only compute where active
14 C[x+rotx[myrotor], y+roty[myrotor]].agent <- ACTIVE // activate new position)
15 myagent <- PASSIVE // passivate own cell (old position)
16 myrotor <- Rotate(myrotor) // rotate own pointer
17 ENDPARALLEL

3. Chip-firing

At the beginning k chips are placed in the middle of a m×m field, here
with cyclic boundaries.

The chips shall be distributed by a diffusion process. The diffusion works
as follows: If the number of chips is greater than a threshold T then the cell
fires and the chips are distributed to the neighbors. A quarter of the chips
is moved to each of the four nearest neighbors. The remaining chips are
distributed according to the rotor’s direction which is rotated after each
chip that has moved.

First a pseudo-code description is given for the CA model, and afterwards
for the CA-w model.

3.1. CA model

Initially k chips are placed in the middle of the field (10–14), all rotors
point to ↑. Then the chips are distributed (15–38). First the chips that
are received from the four neighbors are computed (32). If my cell fires
(mychips > T) then all my chips are distributed and my new chips are equal
to the received chips (34). My own rotor is rotated according to the number
of chips that were distributed (35). If my cell did not fire, the received chips
are added to my chips (36). The number of received chips is computed in
the lines (16–31). Each of the 4 neighbors R[i] are considered. If a neighbor
fires, a quarter of the chips are stored in the temporary variable from[i].
In addition the remaining chips are added to from[i] if the rotated rotor of
the neighbor points to my cell (inverse(i) = i+ 2 mod 4).

The idea of the CA model is to look to the neighboring cells, and then
compute the number of chips to be received from them, and then sum them
up in the own cell.

00 chips : (0 .. k)
01 rotor : (toN, toE, toS, toW) = (0, 1, 2, 3)
02 cell = (rotor, chips)
03 C = ARRAY [0 .. m-1, 0 .. m-1] OF cell

// equivalences, neighbors N E S W; addition/subtraction modulo m
04 N <=> C[x, y-1]; E <=> C[x+1, y];
05 S <=> C[x, y+1]; W <=> C[x-1, y];

64 R. Hoffmann

06 R[0] <=> N, R[1] <=> E, R[2] <=> S, R[3] <=> W
07 mychips <=> C[x,y].chips // chips of centre cell
08 myrotor <=> C[x,y].rotor // rotor of centre cell

09 received, from[0,1,2,3]: temporary variables

// initially k chips placed in the middle, all rotors point toN
10 PARALLEL C[x, y]
11 rotor := toN
12 IF (x = m div 2) AND (y = m div 2)
13 THEN mychips := k ELSE mychips := 0 ENDIF
14 ENDPARALLEL

15 PARALLEL C[x, y]
// compute the chips received from neighbors

16 FOR i = 0 .. 3 // do for all neighbors, if neighbor fired
17 IF R[i].chips > T THEN
18 from[i] := R[i].chips div 4 // first distribute equally

// then distribute the remaining chips in addition
19 CASE R[i].chips mod 4
20 =1: IF R[i].rotor = inverse(i)
21 THEN from[i] := from[i] + 1 ENDIF
22 =2: IF R[i].rotor = inverse(i) OR
23 Rotate(1, R[i].rotor) = inverse(i)
24 THEN from[i] := from[i] + 1 ENDIF
25 =3: IF R[i].rotor = inverse(i) OR
26 Rotate(1, R[i].rotor) = inverse(i) OR
27 Rotate(2, R[i].rotor) = inverse(i)
28 THEN from[i] := from[i] + 1 ENDIF
29 ENDCASE
30 ENDIF
31 ENDFOR

// received chips are now computed
32 received = from[0]+from[1]+from[2]+from[3]

// if own cell has fired then only receive
33 IF mychips > T
34 THEN mychips <- received
35 myrotor <- Rotate(mychips mod 4, myrotor) ENDIF

// own cell not fired
36 ELSE mychips <- mychips + received
37 myrotor <- myrotor ENDIF
38 ENDPARALLEL

3.2. CA-w model

The basic idea of the CA-w model is simple: If the own cell fires then
the chips are send to the neighbors which have the task to sum them up.
In the following pseudo-code the operation y(+)← x is used. The meaning
is that x is added to an implicit available temporary variable y′ (initially

Rotor-routing Algorithms Described by CA-w 65

set to zero), and later, when the clock event for the synchronous updating
appears, y′ is copied into y. In terms of hardware it means that the received
chips are added up by a parallel adder (or by a sequential adder with y′

used as temporary variable). In this example the multiple write-conflict to a
neighbor is solved by summing up the received data. Therefore, the conflict
resolution can be seen simply as a data reduction operator.

Compared to the CA algorithm, the CA-w algorithm is more concise
again. In addition, computing power is only necessary where there are
any chips. In contrast, in the CA model the whole field of cells has to
be computed, or at least the cells containing chips and its neighbors. The
CA computation is also more redundant, e.g. all 4 neighbors have to com-
pute the quarter of my chips R[i].chips div 4 (line 19) whereas this value
(mychips div 4, line 13) has to be computed only once by my cell in the
GCA-w model.

Fig. 4. Chip-firing simulation for a 21×21 field with cyclic boundaries. Visited cells
are shown in grey. The number of chips on a cell are shown in black/red (> 4), dark
grey (= 4), light grey/green or turquoise (1, 2, 3). At the beginning 210 chips are
placed in the middle, and all rotors have a random direction. (a) Threshold = 0:
After 92 generations all cells have been visited and the chips continue to move
around (0–4 chips were observed per cell). (b) Threshold = 1: After 189 generations
a fixed point has been reached. (c) Threshold = 2: After 62 generations a fixed
point has been reached.

66 R. Hoffmann

Simulations with different thresholds are shown in Fig. 4. Threshold= 0:
After 92 generations all cells have been visited and the chips proceed to
move around in a pseudo-random fashion. Threshold= 1: A cell fires if its
number of chips is at least two. After 189 generations a stable configuration
is reached, the visited area forms almost a circle. Threshold = 2: A cell fires
if their number of chips is at least three. A fixed point is reached after 62
generations.

00 - 08 // the same as in the CA program

09 PARALLEL C[x, y] WHERE mychips > 0
10 IF mychips > T
11 THEN // fire

// first distribute equally to N,E,S,W
12 FOR i = 0 .. 3
13 R[i].chips (+)<- mychips div 4 // summed up by R[i]
14 ENDFOR

// then distribute the remaining chips
15 CASE mychips mod 4
16 =1,2,3: R[myrotor].chips (+)<- 1
17 =2,3: R[Rotate(1, myrotor)].chips (+)<- 1
18 =3: R[Rotate(2, myrotor)].chips (+)<- 1
19 ENDCASE

20 myrotor <- Rotate(mychips mod 4, myrotor)
21 ELSE
22 myrotor <- myrotor
23 ENDIF
24 ENDPARALLEL

4. Conclusion

The CA-w (Cellular Automata with write access) model was introduced,
derived from the GCA-w model by a locally restricted neighborhood. This
model allows to modify not only the cell’s own state but also the neighbor’s
state. The neighbors are accessed via dynamic links that can be modified
by the cell’s rule. It was shown that the CA-w model is useful for describing
rotor-routing algorithms. Such algorithms contain a rotor (a pointer) in
each cell that defines the moving direction of particles (agents, chips). The
Propp-machine with one agent and the chip-firing problem were described by
CA-w, and for comparison by CA. The CA-w descriptions are more concise
and “natural” because the change of the system state is only controlled by
the agents. Furthermore, the computational effort to simulate CA-w in
hardware or in software is minimized because only active cells have to be
computed.

Rotor-routing Algorithms Described by CA-w 67

REFERENCES

[1] R. Hoffmann, Acta Phys. Pol. B Proc. Suppl. 3, 347 (2009).
[2] R. Hoffmann, Lect. Notes Comput. Sci. 5698, 194 (2009).
[3] R. Hoffmann, K.-P. Völkmann, S. Waldschmidt, Global Cellular Automata

GCA: An Universal Extension of the CA Model, in: T. Worsch, (ed.), ACRI
Conference, 2000.

[4] S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution
Algorithms, Theory and Applications, World Scientific, 1994.

[5] J. Keller, Chr. Kessler, J. Träff, Practical PRAM Programming, Wiley, 2001.
[6] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[7] D. Keil, D. Goldin, Modeling Indirect Interaction in Open Computational

Systems, Workshop TAPOCS, 12th IEEE Int. Workshops on Enabling
Techn. (WETICE 2003), IEEE Computer Society 2003, ISBN 0-7695-1963-6.

[8] R. Hoffmann, Acta Phys. Pol. B Proc. Suppl. 4, 183 (2011).
[9] J. Cooper, B. Doerr, J. Spencer, G. Tardos, Eur. J. Combin. 28, 2072 (2007).
[10] B. Doerr, T. Friedrich, Combin. Probab. Comput. 18, 123 (2009).
[11] J.N. Cooper, J. Spencer, Combin. Probab. Comput. 15, 815 (2006).
[12] A.E. Holroyd et al., Prog. Probab. 60, 331 (2008).

http://dx.doi.org/10.5506/APhysPolBSupp.4.183
http://dx.doi.org/10.1016/j.ejc.2007.04.018
http://dx.doi.org/10.1017/S0963548308009589
http://dx.doi.org/10.1017/S0963548306007565

	1 Introduction
	1.1 GCA-w model
	1.2 CA-w model
	1.3 Related work

	2 Rotor-routing with 1 agent
	2.1 CA model
	2.2 CA-w model

	3 Chip-firing
	3.1 CA model
	3.2 CA-w model

	4 Conclusion

