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The phenomenon of structural stochastic multiresonance is studied in
the Ising model on a composite network consisting of two coupled scale-free
subnetworks with, possibly, different critical temperatures for the ferromag-
netic transition, driven by a weak, slowly oscillating magnetic field. The-
oretical results obtained from the linear response theory in the mean-field
approximation and numerical results from Monte Carlo simulations yield
qualitatively similar results. The spectral power amplification, evaluated
from the time-dependent order parameter, as a function of temperature
exhibits two or, possibly, three maxima, depending on the exponent in the
power-law tails of the degree distributions of the subnetworks and the frac-
tion of inter-network edges. For small to moderate fraction of inter-network
edges sharp maxima occur at temperatures close to the critical ones for the
Ising model on the individual subnetworks. For densely coupled networks
the spectral power amplification is determined mainly by the response of
the spins on the subnetwork with higher critical temperature to the oscil-
lating magnetic field.
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1. Introduction

Stochastic resonance (SR) [1, 2, 3] is a phenomenon where noise plays a
constructive role by enhancing response of a nonlinear system to a periodic
signal (for review see Ref. [4,5,6]). This response can be characterized, e.g.,
by the spectral power amplification (SPA), defined as the strength of the
Fourier component of the output signal at the frequency of the input signal
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divided by the strength of the input signal, which exhibits a maximum at
non-zero noise intensity. An interesting extension of SR is stochastic mul-
tiresonance (SMR), where the response to the periodic signal is enhanced for
many different values of the noise intensity, which results in multiple max-
ima of the SPA [7, 8, 9]. In particular, SR was studied in complex systems,
including the Ising model, with a weak periodic magnetic field as the input
signal, time-dependent magnetization as the output signal, and thermal fluc-
tuations playing the role of noise. Typically, the response of the Ising model
on regular arrays [10, 11, 12] to the oscillating magnetic field was maximum
in the vicinity of the critical temperature for the ferromagnetic transition
due to the divergence of the magnetic susceptibility, while that of the Ising
model on complex networks [13,14,15,16,17] in some cases could be strong
at temperatures much below the critical one, in the ferromagnetic phase.

It is known that many weblike structures as the Internet, world-wide
web, power supply networks, etc., which are of high importance for the
modern society, have scale-free (SF) topology, i.e., their degree distribution
(distribution of the number of edges, or connections, per node) obeys a
power scaling law pk ∝ k−γ , usually with γ > 2. SF networks belong to a
general class of complex networks whose study is a rapidly developing area in
statistical physics (for review see Ref. [18,19,20]). Namely in the Ising model
on SF networks with 2 < γ < 3 under certain assumptions strong response to
the oscillating magnetic field is observed both at the critical temperature for
the ferromagnetic transition and at lower temperature in the ordered phase,
which results in the occurrence of two maxima of the SPA evaluated from
the time-dependent order parameter as a function of temperature [16, 17].
This is an example of so-called structural SMR, since the origin of the two
maxima of the SPA can be traced back to the topological properties of the
SF network.

In this paper, properties of SR in the Ising model on a complex compos-
ite network which consists of two coupled SF subnetworks are studied; the
subnetworks can have different numbers of nodes and scaling exponents γ,
thus, possibly, different critical temperatures for the Ising model defined on
them. Such a composite network can be treated as the simplest example of
a modular network, with dense links between nodes belonging to the same
subnetwork, and more sparse inter-network connections. Structural SMR is
again observed, with two or, possibly, three maxima of the curve SPA vs.
temperature. It is shown that the response of the Ising model on the com-
posite network to the oscillating magnetic field is a weighted combination
of responses of the spins on the two subnetworks, which can be maximum
at different temperatures. Inputs to the SPA from the subnetworks can be
identified both for weak and strong coupling between subnetworks. This
explains the appearance of the multiple maxima of the SPA.
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2. The model and methods of analysis

The Ising model with ferromagnetic coupling on a complex network with
N nodes and with the degree distribution pk consists of i = 1, 2, . . . N spins
with two possible orientations σi = ±1 located in the nodes and subjected
to thermal noise. The exchange integral between the spins σi, σj is Jij =
J > 0 if there is an edge between nodes i, j, and Jij = 0, otherwise. In
order to observe SR, the input periodic signal in the form of the oscillating
magnetic field h(t) = h0 sinω0t is applied to all spins. The Hamiltonian for
the model is

H = − 1
〈k〉

N∑
i,j=1

Jijσiσj − h0 sinω0t

N∑
i=1

σi , (1)

where 〈k〉 is the average degree of nodes in the whole network. In this paper,
the complex networks under study are composite networks, which consist of
two subnetworks A, B with NA, NB nodes and the degree distributions
p
(A)
k , p(B)

k , respectively, so that N = NA + NB; then, the sum in Eq. (1)
runs over all pairs of spins in both subnetworks. The model obeys the
Glauber thermal-bath dynamics, with the transition rates between two spin
configurations which differ by a single flip of one spin, e.g., that in the node i,
in the form

wi (σi) =
1
2

[
1− σi tanh

(
Ii(t)
T

)]
, (2)

where
Ii(t) =

J

〈k〉
∑
j∈Ki

σj(t) + h0 sinω0t (3)

is a local field acting on the spin i (with degree ki) at time t, T is the
temperature, and the sum in Eq. (3) runs over all neighbours of the node i
in the whole (composite) network.

In order to observe SR, the output signal is assumed as the time-depen-
dent order parameter S(t) [21]

S(t) = (N〈k〉)−1
N∑
i=1

kiσi(t) . (4)

In the case of a composite network the time-dependent order parameters
for each of the two subnetworks can be also analyzed as auxiliary output
signals, i.e.

S(A)(t) = (NA〈k〉A)−1
NA∑
i=1

kiσ
(A)
i (t) , (5)
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for the subnetwork A and similarly defined S(B) for the subnetwork B (〈k〉A
is the average degree of nodels in the subnetwork A). The SPA is evaluated
from the output signal as

SPA = |P1|2 /h2
0 , P1 = lim

τ→∞

1
τ

τ−1∑
t=0

S(t)e−iω0t , (6)

and the dependence of the SPA on the temperature T is analyzed. Simi-
larly, SPAA(T ), SPAB(T ) can be obtained for each subnetwork from S(A)(t),
S(B)(t), respectively.

3. Mean field approximation

Let us consider the Ising model on a composite complex network con-
sisting of two subnetworks. In the composite network there are both intra-
network edges (connecting nodes belonging to the same subnetwork) and
inter-network edges (connecting nodes belonging to different subnetworks).
Let us assume that the probability that a node from the subnetwork A (B)
is linked to a node in the subnetwork B (A) is π(A) (π(B)), i.e., it is constant
for all nodes and does not depend on their degrees. Then the stationary
value of the order parameter and the critical temperature for the possible
order-disorder transition for the model in Sec. 2 can be evaluated in the
mean-field (MF) approximation.

The Master equation for the probability that at time t the system is in
the spin configuration (σ1, σ2, . . . σN ) is

d

dt
P (σ1, σ2, . . . , σj , . . . σN ; t) =

−
N∑
j=1

wj (σj)P (σ1, σ2, . . . , σj , . . . σN ; t)

+
N∑
j=1

wj (−σj)P (σ1, σ2, . . . ,−σj , . . . σN ; t) . (7)

Multiplying both sides of Eq. (7) by σi and performing an ensemble average,
denoted by 〈 〉, yields

d〈σi〉
dt

= −〈σi〉+
〈

tanh
(
Ii(t)
T

)〉
. (8)

The above N equations can be separated into two groups of NA and NB

equations for the mean values of spins belonging to the sunbnetworks A, B,
respectively,
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d
〈
σ

(A)
i

〉
dt

= −
〈
σ

(A)
i

〉
+

〈
tanh

(
I

(A)
i (t)
T

)〉
(9)

(and similar equations for σ(B)
i ), where, formally,

I
(A)
i (t) = Ii(t) =

J

〈k〉

 ∑
j∈K(A)

i

σ
(A)
j (t) +

∑
l∈K(B)

i

σ
(B)
l (t)

+ h0 sinω0t . (10)

Following the argument in Ref. [22], the nodes of the subnetworks can
be divided into classes according to their degrees k, and the spins located in
the nodes of the subnetwork A (B) belonging to the class with degree k are
approximated by their average values 〈σ(A)

k 〉 (〈σ
(B)
k 〉). Replacing the sums

over the nodes of the subnetworks with the sums over the classes of nodes,
yields the following approximate MF values of the order parameters S(A)(t),
S(B)(t) for the subnetworks

S(A)(t) ≈ 〈S(A)(t)〉 =
k
(A)
max∑
k=m

kp
(A)
k

〈k〉A

〈
σ

(A)
k (t)

〉
(11)

(and similar equation for S(B)(t)), where k(A)
max (k(B)

max) are maximum degrees
of nodes in the subnetwork A (B), respectively, and m is the minimum
degree, for simplicity assumed equal for both subnetworks.

Similarly, taking into account that the probability that a link from a
node i with degree ki, belonging to the subnetwork A, points to a node with
degree k, belonging to the subnetwork A, is

(
1− π(A)

)
kp

(A)
k /〈k〉A, and to a

node with degree k, belonging to the subnetwork B, is π(A)kp
(B)
k /〈k〉B, the

MF value of the local field in Eq. (10) becomes

〈
I

(A)
i (t)

〉
=
Jki
〈k〉

(1− π(A)
) k(A)

max∑
k=m

kp
(A)
k

〈k〉A

〈
σ

(A)
k (t)

〉

+ π(A)
k
(B)
max∑
k=m

kp
(B)
k

〈k〉B

〈
σ

(B)
k (t)

〉+ h0 sinω0t

=
Jki
〈k〉

[(
1− π(A)

)〈
S(A)(t)

〉
+ π(A)

〈
S(B)(t)

〉]
+ h0 sinω0t (12)

(in a similar equation for 〈I(B)
i (t)〉 superscripts (A), (B) should be inter-

changed).
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Inserting this approximation on the right-hand side of Eq. (9), multiply-
ing both sides by ki, performing the sum over all nodes of the subnetwork A
and replacing it with a sum over the classes of nodes, the equation for the
continuous-time dynamics of 〈S(A)(t)〉 is finally obtained (equation for the
dynamics of 〈S(B)(t)〉 can be obtained in a similar way),

d
〈
S(A)

〉
dt

=−
〈
S(A)

〉
+
k
(A)
max∑
k=m

p
(A)
k k

〈k〉A
tanh

(
JAk

〈k〉AT

〈
S̃(A)

〉
+
h0

T
sinω0t

)
,

d
〈
S(B)

〉
dt

=−
〈
S(B)

〉
+
k
(B)
max∑
k=m

p
(B)
k k

〈k〉B
tanh

(
JBk

〈k〉BT

〈
S̃(B)

〉
+
h0

T
sinω0t

)
,(13)

where 〈
S̃(A)

〉
=
(
1− π(A)

)〈
S(A)

〉
+ π(A)

〈
S(B)

〉
(14)

(in a similar equation for 〈S̃(B)〉 superscripts (A), (B) should be inter-
changed), and JA = J〈k〉A/〈k〉, JB = J〈k〉B/〈k〉.

Henceforth let us assume that the two subnetworks are SF networks
with the degree distributions p(A)

k = Ak−γA , p(B)
k = Bk−γB , γA, γB > 2,

where A, B are normalization constants, and with the minimum degrees of
nodes m. Provided that there are no artificial constraints on the max-
imum degrees of nodes k(A)

max, k
(B)
max, for NA, NB → ∞ nodes with arbi-

trarily large k are present in the subnetworks, and A = (γA − 1)mγA−1,
B = (γB − 1)mγB−1. However, in practice each subnetwork, say A, has a
finite number of nodes NA and the distribution p(A)

k has a cutoff at a max-
imum value k = k

(A)
max, which for 2 < γA ≤ 3 can be estimated from the

condition
∫∞
k
(A)
max

p
(A)
k dk < N−1

A (since it is practically impossible to find a

node with degree k > k
(A)
max), which yields k(A)

max = mN
1

γA−1

A , and for γA > 3
in practice scales as k(A)

max ∝ N1/2
A (the same for k(B)

max) [23].
In the absence of the magnetic field, the system evolves towards a stable

equilibrium with the corresponding values of the order parameters for the
subnetworks 〈S(A)〉0, 〈S(B)〉0, which can be obtained from a stable fixed
point of Eq. (13) with h0 = 0,

〈
S(A)

〉
0

=

k
(A)
max∫
m

Ak−γA+1

〈k〉A
tanh

(
JAk

〈k〉AT

〈
S̃(A)

〉
0

)
dk ,

〈
S(B)

〉
0

=

k
(B)
max∫
m

Bk−γB+1

〈k〉B
tanh

(
JBk

〈k〉BT

〈
S̃(B)

〉
0

)
dk , (15)
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(〈S̃(A)〉0, 〈S̃(B)〉0 are defined by Eq. (14) with 〈S(A)〉 = 〈S(A)〉0, 〈S(B)〉 =
〈S(B)〉0). The corresponding stationary values of the magnetization 〈M (A)〉0
of the subnetwork A is then

〈
M (A)

〉
0

=

k
(A)
max∫
m

Ak−γA tanh
(

JAk

〈k〉AT

〈
S̃(A)

〉
0

)
dk , (16)

and 〈M (B)〉0 can be evaluated similarly (in Eq. (15), (16) summation was
replaced by integration).

For π(A) = π(B) = 0, i.e., two uncoupled subnetworks, the equations
for 〈S(A)〉0, 〈S(B)〉0 in Eq. (15) become independent of each other. The
equation for 〈S(A)〉0 has one stable fixed point 〈S(A)〉0 = 0 for T > T

(A)
c

corresponding to the paramagnetic phase, and two stable symmetric fixed
points ±〈S(A)〉0 with 〈S(A)〉0 > 0 for T < T

(A)
c corresponding to the fer-

romagnetic phase. The critical temperature T (A)
c = J〈k2〉A/〈k〉2A, where

〈k2〉A is the second moment of the distribution p(A)
k , depends on the scaling

exponent γA and, possibly, on the number of nodes NA. For γA > 3 the sys-
tem undergoes a ferromagnetic phase transition at the critical temperature
T

(A)
c = J γA−2

(γA−1)(γA−3) . For 2 < γA ≤ 3 the critical temperature diverges in
the thermodynamic limit, however, for finite NA there is a crossover (rather
than critical) temperature T (A)

c ∝ lnNA for γA=3 and T (A)
c ∝N (3−γA)/(γA−1)

A
for 2 < γA < 3, separating the ordered and disordered phases [24,25,26,27].
Of course, the same holds for the subnetwork B.

Critical properties of the Ising model on two coupled Barabási–Albert
networks (SF networks with γ = 3) were studied in Refs. [28,29] in the MF
approximation and by means of Monte Carlo (MC) simulations. It was found
that for a moderate and high fraction of the inter-network connections there
is a critical temperature for the ferromagnetic transition for the composite
network. Numerical solution of Eq. (15) as well as MC simulations of the
model described in Sec. 5 show that this is also true in a more complex
case of two coupled SF networks with possibly different numbers of nodes
and scaling exponents. As the temperature is decreased, first the spins start
ordering on the subnetwork which has higher critical temperature in the
uncoupled case (e.g., due to larger number of nodes or lower scaling exponent
of the degree distribution), say B. This happens at the temperature Tc which
for small π(A), π(B) is close to T (B)

c and decreases with the increase of the
fraction of inter-network edges so that for moderate and high π(A), π(B)

it is between T (A)
c and T (B)

c . Immediately, partial ordering of spins in the
other subnetwork occurs, i.e., there is no stable solution of Eq. (15) with
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〈S(A)〉0 = 0, 〈S(B)〉0 6= 0. Hence, Tc can be treated as a sort of critical
temperature for the Ising model on the composite network; its value cannot
be, however, approximated analytically for a wide range of π(A), π(B).

4. Linear response theory

The response of the model to the weak oscillating magnetic field h0 → 0
for given T can be studied in the MF approximation in the framework of the
linear response theory (LRT). It is assumed that the MF order parameters for
the subnetworks 〈S(A)(t)〉, 〈S(B)(t)〉 oscillate around the stable stationary
state, i.e., 〈S(A)(t)〉 = 〈S(A)〉0 + ξA(t), 〈S(B)(t)〉 = 〈S(B)〉0 + ξB(t), where
ξA(t), ξB(t) → 0. Inserting this into Eq. (13), expanding the tanh function
in the Taylor series up to linear terms and replacing the summation with
integration yields

dξA
dt

= − ξA
τAA
− ξB
τAB

+
h0QA
T

sinω0t ,

dξB
dt

= − ξB
τBB

− ξB
τBA

+
h0QB
T

sinω0t , (17)

τAA =

1−
(
1− π(A)

) JA
〈k〉2AT

k(A)
max∑
k=m

p
(A)
k k2 cosh−2

JAk
〈
S̃(A)

〉
0

〈k〉AT

−1

=



{
A(1−π(A))
〈k〉A〈S̃(A)〉0

[
m−γA+2 tanh

(
JAm〈S̃(A)〉0
〈k〉AT

)
−
(
k

(A)
max

)−γA+2

tanh
(
JAk

(A)
max〈S̃(A)〉0
〈k〉AT

)]
+1− 〈

S(A)〉0
〈S̃(A)〉0

(
1− π(A)

)
(γA − 2)

}−1

for T ≤ Tc ,[
1−

(
1− π(A)

) 〈k〉A
〈k〉

T (A)
c
T

]−1

for T > Tc ,

τAB =
[

π(A)

1− π(A)

(
τ−1
AA − 1

)]−1

,

QA =
1
〈k〉A

k(A)
max∑
k=m

p
(A)
k k cosh−2

JAk
〈
S̃(A)

〉
0

〈k〉AT



=


AT

JA〈S̃(A)〉0

[(
k

(A)
max

)−γA+1

tanh
(
JAk

(A)
max〈S̃(A)〉0
〈k〉AT

)
−m−γA+1 tanh

(
JAm〈S̃(A)〉0
〈k〉AT

)]
+(γA−1)

〈M(A)〉0
JA〈S̃(A)〉0

for T ≤ Tc ,

1 for T > Tc .
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The quantities τBA, τBB and QB are defined analogously; to evaluate τAA
and QA for T ≤ Tc the integration by parts was performed, and Eqs. (15),
(16) were taken into account.

The asymptotic solution of Eq. (17) is

ξA(t) = α1 sinω0t+ α2 cosω0t ,

ξB(t) = β1 sinω0t+ β2 cosω0t , (18)

where the coefficients can be obtained from the system of linear equations
τ−1
AA −ω0 τ−1

AB 0
ω0 τ−1

AA 0 τ−1
AB

τ−1
BA 0 τ−1

BB −ω0

0 τ−1
BA ω0 τ−1

BB



α1

α2

β1

β2

 =


QAh0T

−1

0
QBh0T

−1

0

 . (19)

The SPA for the subnetworks are

SPAA(T ) =
α2

1 + α2
2

4h2
0

, SPAB(T ) =
β2

1 + β2
2

4h2
0

, (20)

and for the composite network

SPA(T ) =
NA

N
SPAA(T ) +

NB

N
SPAB(T ) . (21)

5. Model for numerical simulations

For the purpose of numerical simulations the Ising model on a composite
network consisting of two SF subnetworks may be obtained as follows. The
procedure starts with the construction of two independent SF networks A,
B with required numbers of nodes NA, NB and scaling exponents γA, γB
using the algorithm proposed in Ref. [19], which is an extension of the well-
known Barabási–Albert preferential attachment algorithm [30]. First, for
each network, a small number m+1 of fully connected nodes is fixed. Then,
step by step, new nodes are added, and each new node is connected to
existing nodes with m edges according to the following probabilistic rule:
Probability of linking to a node i is pi = (ki + β) /

∑
i (ki + β), where ki

is the actual degree of the node i,
∑

i ki is the actual number of edges in
the whole network, and β is a tunable parameter representing the initial
attractiveness of each node, which can be different for each network. The
growth process is continued until the desired number of nodes NA or NB is
reached, when the network structure is frozen. For large number of nodes,
this preferential attachment rule results in the network with the mean node
degree 〈k〉 = 2m and the degree distribution pk ∝ k−γ for k � β, with
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γ = 3+β/m. However, it should be noted that in networks obtained in this
way for small k the distribution pk deviates from the power scaling law and
is almost uniform.

After the two independent SF networks are constructed, cutting and
rewiring of edges is performed in order to create links between nodes be-
longing to different networks. In this way, the two SF networks become
subnetworks of a composite network. In each network A, B, pair of con-
nected nodes is chosen at random, the two intra-network edges are cut, and,
instead, two inter-network edges are created, each connecting a node from
the subnetwork A to a node from the subnetwork B: the first pair of nodes
to be connected is chosen at random, and the second inter-network edge
connects the two remaining nodes. This cutting and rewiring procedure is
repeated until a desired number of inter-network edges is created, and the
fraction of the latter edges to the total number of edges in each network
becomes π(A), π(B), respectively. The degree distributions of the two net-
works are not affected by this procedure since cutting and rewiring of edges
does not change the degrees of individual nodes. Finally, after the required
composite network is constructed, the Ising spins are located in its nodes.

In order to observe SR in the Ising model on the above-mentioned com-
posite network MC simulations were performed using the Glauber heat-bath
algorithm (2). The subnetworks had various numbers of nodes NA, NB and
scaling exponents γA, γB; only the parameter m = 5 was fixed. The fre-
quency of the slowly varying magnetic field was ω0 = 2π/512, and its ampli-
tude h0 = 0.01 since for smaller values prohibitively long simulation times
were necessary to obtain reliable curves SPA vs. T due to intrinsic thermal
fluctuations in the system. Typically, simulation time was 215 steps of the
MC algorithm (with one step corresponding to updating N spins), and the
results were averaged over 10 random realizations of the network.

6. Results and discussion

6.1. Subnetworks with equal number of nodes NA = NB and different
scaling exponents γA 6= γB

Exemplary curves SPA vs. T for the Ising model on the composite net-
work consisting of two subnetworks with NA = NB = 5000 and different
scaling exponents γA = 5 and γB = 2.5 obtained from the LRT in the
MF approximation (Sec. 4.2) for different fractions of inter-network edges
π(A) = π(B) = ν are shown in Fig. 1 (a). For uncoupled subnetworks (ν = 0)
SPA exhibits two sharp maxima at temperatures close to the critical (for
the subnetwork A) or crossover (for the subnetwork B) temperatures for
the ferromagnetic transition. As the fraction of rewired edges increases the
first maximum (at lower temperature) diminishes, but its location remains
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practically unchanged. In contrast, the second maximum (at higher temper-
ature) grows and is shifted towards lower temperatures; it is located close
to the critical temperature for the Ising model on the composite network.
Hence, in a wide range of ν, double maxima of the SPA as a function of
temperature occur, i.e., SMR is observed. In Fig. 1 (b) exemplary curves
SPA vs. T are shown, obtained from MC simulations of the model described
in Sec. 5 with the same parameters as in Fig. 1 (a) (β = 10 for the subnet-
work A and β = −3 for the subnetwork B). They resemble qualitatively
the corresponding theoretical curves, although the rise and shift towards
lower temperatures of the second maximum (at the higher temperature) of
the SPA is less significant. Quantitative agreement between numerical and
theoretical curves cannot be expected, mainly because the degree distribu-
tions of the subnetworks constructed using the algorithm of Ref. [19] deviate
from the power-law behaviour for k → 0, thus also the critical, or crossover,
temperatures for the ferromagnetic transition are significantly different. An-

Fig. 1. SPA vs. T for the Ising model on the composite network consisting of two
SF subnetworks with NA = NB = 5000 and γA = 5, γB = 2.5 for different fractions
of inter-network edges ν (see legend); (a) theoretical results in the MF and LRT
approximations, (b) results of MC simulations of the appropriate model of Sec. 5.
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other source of discrepancy may be the presence of correlations between the
degrees of nodes, which are unavoidable in the networks with 2 < γ < 3
and without any artificial limit on the maximum degree [23]. The MF ap-
proximation neglects such correlations which leads to overestimation of the
critical temperature. Thus, for example, in the case of the Ising model on a
single SF network, the maxima of the SPA are shifted toward higher tem-
peratures, even if the degree distribution obeys pure power scaling law [17].

In Fig. 2, the curves SPAA, SPAB vs. T are shown for individual sub-
networks, for the system with the same parameters as in Fig. 1; again, the
agreement between the theoretical (left column) and numerical (right col-
umn) results is only qualitative. As mentioned in Sec. 1 in the case of the
Ising model on SF network with the tails of the degree distributions obeying
the power scaling law with 2 < γ < 3, and with no artificial constraints on
the maximum degree of nodes, so-called structural SMR is observed [16,17]:

Fig. 2. SPA (thick solid lines and filled dots), SPAA (dashed lines and empty dots),
SPAB (thin solid lines and crosses) vs. T for the same model as in Fig. 1, left
column: theoretical results in the MF and LRT approximations, right column:
results of MC simulations, (a), (b) ν = 0, (c), (d) ν = 0.06, (e), (f) ν = 0.3.
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the curve SPA vs. T exhibits two maxima, a sharp one close to the crossover
temperature and a lower, broad one in the ordered phase. This is shown in
Fig. 2 (a), (b), where the curve SPAB vs. T with the above-mentioned prop-
erties can be seen for ν = 0. On the other hand, in the case of the Ising
model on SF networks with γ > 3 the curve SPA vs. T exhibits one maxi-
mum close to the critical temperature. This is the case of the curve SPAA
vs. T in Fig. 2 (a), (b). The location of the maximum of SPAA coincides
with that of the broad maximum of SPAB in the ordered phase. As the
fraction of inter-network edges ν increases, the sharp maximum of SPAA
(i.e., of the subnetwork with γ > 3) quickly disappears, while the broad
maximum of SPAB (i.e., of the subnetwork with 2 < γ < 3) remains practi-
cally intact, and an additional maximum of SPAA at the temperature close
to the crossover temperature of the subnetwork B gradually appears.

From Eq. (21) it follows that SPA for the composite network is a weighted
combination of SPAA and SPAB. Thus, the occurrence of the double max-
ima of the curve SPA vs. T in Fig. 1 is another example of structural SMR,
and the individual maxima can be attributed to the response of the spins
on the two subnetworks to the oscillating magnetic field. The shape of the
dependence of the SPA on T for a network composed of densely connected
subnetworks (larger ν) is mainly determined by the response of the subnet-
work with higher critical, or crossover, temperature (with 2 < γ < 3), even
if the numbers of nodes in both networks are equal. The influence of the
response of the subnetwork with lower critical temperature diminishes with
the rise of ν. The critical behaviour of the Ising model on SF networks,
and thus its susceptibility, is determined by “hubs”, i.e. , spins located in
nodes with a very high degree, which are with higher probability present in
the networks with lower γ (thus, with higher critical temperature). As the
number of inter-network edges increases the influence of these hubs spreads
over the entire composite network, which yields the curves SPA vs. T similar
to those of the SPAB vs. T .

6.2. Subnetworks with different number of nodes NA 6= NB

and equal scaling exponents γA = γB

Exemplary curves SPA, SPAA and SPAB vs. T for the Ising model on
the composite network consisting of two subnetworks with different numbers
of nodes NA = 3000, NB = 5000 and equal scaling exponents γA = γB = 2.5
obtained from the LRT in the MF approximation are shown in Fig. 3 (a) for
the case of small but not negligible fraction of inter-network connections
π(A) = 0.02, π(B) = 0.012. Corresponding results of the MC simulations
are shown in Fig. 3 (b). As in Fig. 1, the agreement between theoretical
and numerical results is only qualitative. However, in both cases the curves
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SPA vs. T exhibit three rather than two maxima: a broad maximum at
low temperature, in the ordered phase, a sharp one close to the crossover
temperature of the larger subnetwork with NB = 5000 (which is also the
critical temperature for the composite network), and a small one between
the two above-mentioned ones, in the vicinity of the crossover temperature
for the smaller subnetwork with NB = 3000. The latter maximum seems
negligible in Fig. 3 (b) (where it is marked by an arrow), however, it does not
disappear as a result of averaging over many realizations of the network. For
π(A) = π(B) = 0 this maximum is more distinct, and disappears gradually
as the fraction of inter-network edges increases (not shown).

This is a more complex example of structural SMR. Since 2 < γA =
γB < 3, for π(A) = π(B) = 0 both curves SPAA, SPAB vs. T exhibit double
maxima [16, 17], one broad at similar temperatures, in the ordered phase,

Fig. 3. SPA (thick solid lines and filled circles), SPAA (dashed lines and empty
circles), SPAB (thin solid lines and crosses) vs. T for the Ising model on the
composite network consisting of two SF networks with NA = 3000, NB = 5000 and
γA = γB = 2.5 for π(A) = 0.02, π(B) = 0.012, (a) Theoretical results in the MF
and LRT approximations, (b) results of MC simulations of the appropriate model
of Sec. 5.
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and one sharp, at crossover temperatures which are different due to different
number of nodes in the two networks. As the fraction of inter-network edges
increases the maximum of the SPAA close to the crossover temperature for
the smaller subnetwork A (lower than that for the larger subnetwork B)
gradually diminishes. Thus, as in the case considered in Sec. 6.1, the shape
of the dependence of the SPA on T for a network composed of densely
connected subnetworks is mainly determined by the response of spins on the
subnetwork with higher crossover temperature to the oscillating magnetic
field.

7. Summary and conclusions

Structural SMR was observed in the Ising model on a complex composite
network consisting of two coupled SF subnetworks. The subnetworks could
differ by the number of nodes or the scaling exponent in the degree distribu-
tion, thus also by the critical temperature for the ferromagnetic transition.
The curves SPA vs. T exhibited two or, possibly, three maxima, and their
height and location depended on the fraction of inter-network edges. Their
occurrence can be associated with the maxima of the response of spins in
the two subnetworks to the weak oscillating magnetic field. For uncoupled
subnetworks the Ising models on the subnetworks exhibited SR or even SMR
(the respective curves SPA vs. T showed one or, possibly, two maxima). For
non-zero fraction of inter-network edges the SPA from the model on the
composite network was a weighted combination of inputs from the subnet-
works: for sparsely connected subnetworks both components were compara-
ble, while for more densely connected networks that from the network with
higher critical temperature prevailed.

Although structural SMR was first observed in the Ising model on SF
networks with no modular structure [16,17], the occurrence of multiple max-
ima of the SPA in the Ising model on a composite network can be understood
more intuitively, since the sharp, high maxima appear at temperatures close
to the critical (crossover) ones for the individual subnetworks, at least for
small fraction of inter-network edges. This suggests that the curve SPA vs. T
for the Ising model on a composite network consisting of more subnetworks,
each with different critical (crossover) temperature for the ferromagnetic
transition, can exhibit even more local maxima for small to moderate frac-
tion of inter-network edges, and more complex picture of structural SMR
can be obtained. This conjecture also opens way to search for structural
SMR in systems other than the Ising model, with a topology of complex
modular networks.

This paper was supported by the Polish Ministry of Science and Higher
Education, Grant No. 496/N-COST/2009/0.
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