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Oscillating cellular automata placed on two-dimensional stochastic lat-
tice are proposed to model normal and abnormal cardiac pacemaker activ-
ity. In addition to Greenberg–Hasting approach, interactions which elon-
gate the cellular period are proposed. Stationary states of the proposed
system depend on density of intercellular connections, and thresholds for
cell-to-cell interactions. The transition from expanding to collapsing wave
patterns is observed at certain model parameters. A physiological meaning
can be given to that transition, namely, as the arrhythmia phenomenon
developing in the real heart due to abnormal high potassium concentration
in the blood.
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1. Introduction

Networks containing many oscillating units appear in different fields of
science. The sinoatrial nodal tissue — the first mammalian pacemaker —
is one of such example. Mechanisms involved in the coordination of a large
group of pacemaker cells have been discussed since 1980, see [1] for review.
To this day, they are still not clear. Since the phenomenon of the phase sensi-
tivity of pacemaker cells to discrete external stimuli is ubiquitous and univer-
sal in different species, therefore the hypothesis of a democratic consensus
achieved through the mutual entrainment of cells has been proposed [2].
This hypothesis has been verified in experiments with cells from different
mammalian pacemaker cells.
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Entrainment literally means to get aboard a train. However, in the
case of interacting systems this notion is used to describe changes carried
along by a train of controlling stimuli. In a system where each unit is both
source and recipient of stimuli, like in the pacemaker tissue, the emergence
of mutual entrainment is a sign of self-organization. Therefore, explaining
the perpetual work of sinoatrial node (SAN) has become a challenging task
for researchers working in the complex systems.

Much effort has been put to understand the collective dynamics of the
oscillating units. If oscillators are identical, or are connected all-to-all, some
mathematical analysis can be done [3]. However, real networks composed
of real oscillators have often heterogeneous spatial structure and cellular os-
cillators are usually of many types. In order to model dynamics of such
systems we must rely on simulation. Therefore, having little hope for rigor-
ous approach, the stationary states obtained from simulations, we will call
the solutions.

In the following, a cellular automata network will be proposed to study
conditions when identical phase-sensitive oscillatory automata, called FRA
cells, distributed in nodes of the stochastic 2-dim lattice, provide a robust os-
cillatory signal. The model of a pacemaker cell with the phase-sensitivity was
introduced by Abramovich-Silvan et al. [5]. On the other hand, Greenberg
and Hastings considered the simple discrete system — cellular automata,
which reconstructed properties of the excitable tissue [6] in a critical but
robust way [7]. The Greenberg–Hastings approach was successfully applied
to model the chicken embryo heart [8]. Our proposition goes beyond the ex-
citable tissue idea. We propose a new mechanism which enables to elongate
the period of cellular oscillations.

The paper is organized as follows. In Sec. 2 we provide the physiological
arguments supporting the presented approach. Then in Sec. 3 we give the
formal definition of interactions and construct the network of intercellular
connections. The results obtained by simulations are presented in Sec. 4.
The effects of the self-organization are classified according to the type of
patterns appearing in stationary states. The last section contains the dis-
cussion of the results with respect to the known physiology. The simplified
FRA model, with interactions limited to period shortenings, is described in
our earlier papers [9].

2. Physiological motivation for the FRA model

The sinus node tissue is flat, and its contents is usually described as rarely
connected myocytes (i.e., cardiac cells) [10, 11, 12, 13]. For example, in the
canine tissue, each pacemaker cell is connected to 4, 5 or 6 spatially adjacent
cells by the so-called gap junctions [14]. Cells transduce signals by these
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connections. The pacemaker myocytes do not form any regular structure
which is typical for myocytes in the atria or ventricles [12]. Moreover, the
sinus node tissue is insulated from the atrium by collagen tissue. Therefore,
the pacemaker can be reliably approximated by a square lattice with free
boundary conditions where vertices are interpreted as myocytes, and where
only some of lattice neighboring cells are interconnected [8].

There is a sequence of biochemical processes that changes the electrical
potential of the membrane of myocyte, see Fig. 1 (a). This property can be
observed on any myocyte. However, the course of the membrane potential
in the pacemaker cell is substantially different from any atrial or ventricular
cell. Firstly, the rapid increase of potential [marked as F in Fig. 1 (a)] is
not as rapid as it develops in the atrial cell. The phenomenon of the rapid
increase of the potential is called the action potential. After completing
the action potential and reaching back to the lowest negative value, the
membrane potential of a nodal cell does not stay resting, as it happens
in the case of atrial cells, but continuously rises to the threshold value.
Because of that, the pacemaker cells are self-excitatory, and therefore, we
can approximate a pacemaker cell by an oscillating unit.

Fig. 1. (a) The course of the membrane potential of a sinus node cell (modified
from [4]) and (b) illustration of a cycle of a FRA cell and its phasic sensitivity.
Regular arrows describe unperturbed intrinsic cycle. Each wide arrow denotes an
external stimulus which changes the cellular cycle. The corresponding changes are
marked by dashed lines.
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Plenty of ionic current models have been designed to describe the variety
of electrophysiology of isolated cardiac cells, see [15] for a review. Numeri-
cal integrations of equations of these models can be challenging because of
the differences in time and space scales [15]. The transition from systems
describing interactions of few cells to significantly larger systems demands
the coarse graining reduction. Therefore, the simplified approach, based on
discrete state cellular automata should be particularly justified.

Let us design a cellular automaton for which the fast uprise of the mem-
brane potential is represented by states denoted Fk which form the so-called
called Firing phase, see Fig. 1 (b). After f steps in Firing phase a cell always
moves to the phase called Refractory. The first Refractory state is denoted
R1. If the intrinsic cycle of a cell performs itself smoothly, i.e., without
interactions with the outside, then after r steps a cell becomes Active and
its state is A1. Finally, after a steps in Active phase a cell switches itself to
F1 state, i.e., initiates the next action potential. However, if some external
stimulus enter the cell when the cell is in Ak state then the next time step
state is F1. The cellular cycle is shortened. If an external stimulus occurs
when the cell is in Rk state then the cell spends some extra time steps in
the Refractory states. Therefore the cellular period is elongated.

3. Formal definitions of the FRA network

Def. of a FRA cell intrinsic cycle:
Let Σ = {Fk, Rk, Ak}, where k ∈ {1, 2, . . . , nσ} and nσ ∈ {f, r, a}
correspondingly, be the state space of a FRA cell.
Let φ(t) denote the phase of a FRA cell at time t.
Let φ(t) = σk, where σk ∈ Σ is any state of a FRA cell.
A cellular phase φ(t+ 1) in the next time step is

φ(t+ 1) = σk+1 if k < nσ
φ(t+ 1) = next(σ)1 if k = nσ

, (1)

where next(F ) = R, next(R) = A, next(A) = F .

Thus, a free evolution of FRA cell means cyclic repetitions of the following
sequence of states:

F1F2 . . . FfR1, R2 . . . RrA1, A2 . . . AaF1F2 . . .

which leads to oscillations with the so-called intrinsic cellular period: T =
f + r + a.
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Def. of FRA cell interactions:
If a FRA cell receives a stimulus then a cellular phase φ(t+ 1) in the
next time step is:

φ(t+ 1) = F1 if φ(t) = Ak, where k = 1, . . . , a , (2)
φ(t+ 1) = Rmax{1,g(k)} if φ(t) = Rk, where k = 1, . . . , r , (3)

where
g(k) = bk/2c . (4)

Rules (1) and (2) lead to the excitatory cellular automata studied by us
earlier [9]. By adding rule (3), we assume that the cellular Refractory phase
is rolled back by half time steps of the current advancement in the Refractory
states if the cell receives a stimulus. Note that if g(k) = k then we obtain
the previous model.

In general, oscillations with periods other than T are imprints of inter-
actions between cells. Let T ∗ = f + r+1 denote the shortest possible cycle.
It can occur if a stimulus is received just in the moment when a cell is in
the first activity state A1. To maintain such oscillations the stimulus with
period T ∗ must act permanently. On the other hand, because of the rule (3),
a cell is kept in Refractory phase as long as the stimulus is present. There-
fore, there is no limit to the longest cycle.

In the case of interacting oscillating systems, the notion of the entrain-
ment is often used to describe the process that leads to accepting the common
period. In the simplified system — rules (1) and (2), the entrainment be-
tween FRA-type cells yielded the arrangement of cellular oscillatory phases
what often effected in the emergence of spiral-wave patterns.

To learn more about the impact of rule (3) let us observe the entrainment
in a system of two coupled FRA cells. Let us assume that each time a FRA
cell is any Fk state, it sends a stimulus to a neighboring cell. We ask what
kind of evolution is achieved if two FRA cells interact with each other.
The following cases should be considered:

— a cell in Ri meets a cell in Fj . Then(
Ri
Fj

)
→

(
Ri/2
Fj+1

)
→ . . .

(
R1

R1

)
,

— a cell in Ai meets a cell in Fj . Then for some k(
Ai
Fj

)
→

(
F1

Fj+1

)
→ . . .

(
Fk
R1

)
→ . . .

(
R1

R1

)
,
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— a cell in Fi meets a cell in Fj where i < j. Then(
Fi
Fj

)
→

(
Fi+1

Fj+1

)
→ . . .

(
Fk
R1

)
→ . . .

(
R1

R1

)
.

Thus, in the long-time limit, the interactions between any two FRA cells
always lead to the phase difference between cells equal to zero. Let us call
such common oscillation as marching FRA cells. The duration of the system
period is T as in the case of the free cellular evolution. However, due to the
process of accepting the same oscillation, the cells evolve with the same
oscillatory phase.

The solution as the pattern of the marching FRA cells is distinct from
the set of possible results obtained when the FRA system evolves without
the rule (3). In the latter case, when evolution is driven only by rules (1)
and (2), the entrainment leads to states where difference between oscilla-
tory phases of neighboring cells is equal to +1 or −1. Moreover, at special
conditions the mutual entrainment between cells is observed what provides
the sustained stable evolution with the shortest possible period T ∗. The
solution with marching FRA cells exists, however this solution is unstable,
hence unobservable in simulations, see [16].

Def. of a FRA network:
A FRA network of density d consists of N = L×L FRA cells located in
vertices of 2-dimensional square lattice of linear size L, where any two
cells in any of Moore neighborhoods are connected with probability d.
The boundary conditions of a system are open.

Let us recall that the Moore neighborhood comprises the eight cells sur-
rounding a central cell and the central cell itself. It is worth to note that in
order to establish a FRA network with 4–6 neighbors, d should be between
0.50 and 0.75.

Def. of intercellular interactions:
A cell being in any of the Active states Ai executes the rule (2) only if
more than NF of its nearest neighbors are in any of the Firing states
Fi. We denote this threshold F > NF.
A cell being in any of Refractory states Ri executes rule (3) if more
than NR of its nearest neighbors are in any of the Firing states Fi.
We denote this threshold R > NR.

Thus, interactions are driven by two parameters NF and NR. By chang-
ing the value of parameters NF and NR we can influence the sensitivity of
intercellular interaction.
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4. Results

We concentrate on results obtained from the FRA system where dura-
tions of states are f = 10, r = 11, a = 19. The values of f , r, a are chosen to
approximate the relations between durations of particular states that occur
in natural nodal cells located at the center of the sinus node, compare with
Fig. 1 and see [12].

In Fig. 2 we show snapshots taken from typical states obtained when
influence of rule (3) is strongly limited. Specifically, we assume that at least
five nearest neighbors have to be in any of Firing states to influence a cell
being in the Refractory state.

Fig. 2. Typical stationary states of the system if density of intercellular connection
changes from d = 0.55 (top-left figure), d = 0.65 (top-right figure) to d = 0.95
(bottom figures) for F > 1 and R > 4. Black (red) color denotes cells in Fi states,
white color marks cells in Ri states and gray (pale blue) color is used to denote
cells in Ai states.

It appears that if rule (2) dominates and density d is low then the state
consists of many small-size clusters of cells in which cells perform the syn-
chronized evolution, see top-left panel in Fig. 2. If the connectivity between
cells increases, a transition is observed from configurations with patterns
without visible waves, to fractured, spiral-like waves. In the case when
F > 1 and R > 4, this transition takes place at d ≈ 0.65. If density d is
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large, here, close to 1, then a small number (often one) of a strong concentric
wave emerges. In this limit two types of states are observed. The first type
has a property that each cell evolves according to the intrinsic cycle but,
due to interactions, all cells have oscillatory phases adjusted — phases of
nearest neighboring cells differ by ±1. Because of this phase arrangement,
we can observe configurations as moving stripes that are as wide as the du-
ration of the corresponding phase. The other type of solution is shown in
Fig. 2 bottom-right. Here all cells evolve with the shortest cycle T ∗. This
is possible due to the existence of a set of mutually entrained cells that are
the source of the fast oscillation. Then the oscillatory phase adjustment
among all neighboring cells allows to propagate this fast oscillation outside
the source.

The description of configurations could become more clear if we apply
the predator-prey concept on the cluster level [17].

Let the collection of cells within the Firing states be seen as the predator
(black/red), while the excitable cells — cells in the Active states (gray/pale
blue), play the role of the prey. The idea is that cells in the Firing states
(i.e., the predator cells) are all capable of exciting (“eating”) cells in the
Active states (i.e., the prey cells). Without the prey around, predator cells
move to the Refractory state (white). Following a Refractory period, dead
cells will regenerate and become prey cells.

Let us apply the concept of predator-prey to the states shown in Fig. 2.
We see that the areas of the predator have elongated and usually curved
shapes. The predator clusters are bordered with homogeneous regions of the
preys at the outer side with respect to the curvature of the cluster. On the
opposite side of the predator cluster there are cells in the Refractory states
only. Therefore the cluster evolution can be described as the expansion of
the predator from some centers of spirals to the borders of the FRA network.

In Fig. 3 we present configurations obtained when cells in the Refractory
states are strongly sensitive to neighbors being in the Firing states. Namely,
we assume that at least 5 nearest neighbors have to be in any of Firing states
to influence a cell that is in any of Active states while only two neighbors in
Firing states are sufficient to elongate the Refractory phase of a cell.

As we expect the solution with marching FRA cells occurs rather fre-
quently. However, the emergence of large waves of the predator takes place
too. In the case of F > 4 and R > 1 it appears at density d = 0.65, see top-
right panel in Fig. 3. However, the clusters of the preys are located inside
the predator area. Therefore, the predator chasing after the preys looks like
collapsing from the borders of the system to some region in the center. The
solution with collapsing spiral is not the only solution observable at d = 0.65
but it emerges with probability around 0.5.
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Fig. 3. Typical stationary states of the system if density of intercellular connection
changes from d = 0.55 (top-left figure) by d = 0.65 (top-right and bottom-left
figures) to d = 0.95 (bottom-right figure) for F > 4 and R > 1. Black (red) color
denotes cells in Fi states, white color marks cells in Ri states and gray (pale blue)
color denotes cells in Ai states.

When the density of connections is large enough then after a very long
evolution (more than 20000 time steps) a strong collapsing spiral is always
obtained, see bottom-right panel in Fig. 3. The period most often found is
T + 1. The extra step is due to the persistent elongation of the Refractory
state when a cell is at the edge of the predator area.

Fig. 4 emphasizes the difference between the two wave solutions discussed
above. We show there the strong “perfect” spiral waves of each type: ex-
panding (left plot) and collapsing (right plot). Such strong wave forms were
observed at different densities and for many values of F and R. Therefore,
by switching values of F and R and changing the density d of intercellu-
lar connections we searched for conditions at which expanding or collapsing
spiral-patterns appear in the FRA network. Specifically, in computer exper-
iments, we observed the stationary states and qualified them according to
the shape of the predator, i.e., by properties of the Firing state patterns.
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Fig. 4. Configurations with two types of states: expanding excitation wave front
(predators) from some center to the borders (left), and collapsing excitation wave
front from the borders to some center part (right). Arrows additionally point at
direction of the front of excitation.

At first, the stationary states were split into configurations without any
signs of pattern structure (e.g., states like top-left in Figs. 2 and 3) and
others. Then, the states of the second group were classified with respect to
the presence of expanding or collapsing spirals. Usually these events were
interwoven by the state with all cells marching. Moreover, in some case
we observed the expanding or collapsing wave pattern living only in some
bounded part of the plane. The situations where the marching cells solution
coexisted with the spiral solution, we qualified as a mixture of the march
and the corresponding spiral.

Tables I and II collect results of our simulation experiments found after
at least 50 runs for each case. The density values, which are not explicitly
shown in the tables, correspond to events where either we always did not
obtain any signs of pattern structure (case of small densities), or the solution
was always the marching cells (case of large densities).

The geometrical relations can be though as imitating temperature ef-
fects present in a thermodynamic system. Namely, the small density of
connections can be interpreted as the high temperature regime. FRA cells
live independently of each other what leads to rather random patterns of
the predator regardless of the interaction sensitivity. The opposite case,
when all 8 possible intercellular connections are established, corresponds to
the frozen structure. If interactions affecting the Refractory phase strongly
dominate over interactions changing the Active phase (e.g., F > 4, R > 1)
then the complex pattern with the collapsing spiral emerges. If the change
in the Active phase is definitely more sensitive than in the Refractory phase
(e.g., F > 1, R > 4), then always the expanding spiral occurs. However,
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in all cases between, the solution with all cells marching appears as the
only solution or very probable solution. The transition between these limit
solutions goes by patterns with either collapsing or expanding wave shape.

TABLE I

Probability to observe the stationary state in FRA system as a given pattern, for
various values of interaction parameters F and R and density d of intercellular
connections — part I.

d spiral of type: mixed state: march
density →← ←→ 0+→← 0+←→

case: F > 0, R > 0
0.30 0.73 0.23 0.04
0.35 0.29 0.21 0.50
0.40 0.20 0.12 0.68
0.45 0.18 0.82
0.50 1.0

case: F > 1, R > 0
0.45 1.00
0.50 0.64 0.36
0.55 0.63 0.38
0.60 0.29 0.71
0.65 0.06 0.06 0.88
0.70 0.05 0.95
0.75 1.00

case: F > 0, R > 1
0.60 1.00
0.65 0.79 0.21
0.70 0.61 0.34 0.05
0.75 0.24 0.48 0.28
0.80 0.43 0.57
0.85 0.20 0.80
0.90 0.07 0.93
0.95 1.00

case: F > 2, R > 0
0.45 1.00
0.50 0.90 0.10
0.55 0.68 0.32
0.60 0.24 0.76
0.65 1.00

Notation used in the table headings:
→← = collapsing spiral; ←→ = expanding spiral; 0+ →← = march coexisting with
collapsing spiral; 0+ ←→ = march coexisting with expanding spiral.
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TABLE II

Probability to observe the stationary state in FRA system as a given pattern —
part II.

d spiral of type: mixed state: march
density →← ←→ 0+→← 0+←→

case: F > 1, R > 1
0.50
0.55 0.15 0.23 0.62
0.60 0.22 0.21 0.57
0.65 0.04 0.15 0.29 0.21 0.32
0.70 0.14 0.08 0.04 0.74
0.75 0.13 0.07 0.80
0.80 0.06 0.95
0.85 1.00

case: F > 1, R > 2
0.55 0.06 0.94
0.60 0.03 0.97
0.65 0.82 0.17 0.02
0.70 0.78 0.14 0.08
0.75 0.67 0.33
0.80 0.43 0.53 0.04
0.85 0.08 0.13 0.22 0.57
0.90 0.10 0.13 0.77

case: F > 2, R > 1
0.60 1.00
0.65 0.05 0.02 0.93
0.70 1.00
0.75 0.03 0.97
0.80 0.07 0.93
0.85 1.00
0.90 0.15 0.85
0.95 0.08 0.20 0.72
1.00 0.29 0.71

Notation as in Table I.

5. Discussion and conclusions

The FRA system has appeared extremely sensitive to the topological
parameters such as strength of interactions measured by thresholds F and
R and density d of intercellular connections. At densities 0.50 < d < 0.75
the system exhibits the largest variety of possible solutions. Specifically,
if F > 1, R > 1 and d = 0.65 then all types of stationary states were
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observable. Let us recall that this density closely corresponds to the density
found in the canine sinoatrial node. Moreover, it is known that the phase
sensitivity of a pacemaker cell is more effective in shortening the cellular
cycle, and that the overall velocity of the impulse propagation is lower in
the sinus node tissue when compared to the atrial tissue [13]. In the FRA
model these properties could be revealed by higher than 0 values of the
thresholds F and R and with the threshold F smaller than the threshold R.
In our opinion, F > 1 and R > 2 restore the real system properties in the
best way. Going further from the above described correspondence, we should
ask whether the other properties observed in the model could be related to
some events encountered in the real pacemakers.

The interesting response could be found from analysis of the phenomenon
known as hyperkalemia — high potassium level in blood. Hyperkalemia is a
common clinical condition that can induce deadly cardiac arrhythmias [4,1].
The relation between the FRA model and hyperkalemia can be routed as
follows. There are many types of ion channels (mainly to transport ions
of sodium, potassium and calcium) that are responsible for the slow dias-
tolic depolarization phase which in the FRA model coincides with the Active
phase. But only potassium channels operate during the properly functioning
of the repolarization phase, thereby increasing the outward directed hyper-
polarizing K+ currents [13]. It is known that when the serum potassium
level is elevated to 5.78 ± 0.96mEq/L, the sinus node recovery time — the
time needed for completing the repolarization, is significantly prolonged [4]
what decreases the action rate of the sinus node. The Refractory phase in
the FRA model corresponds to the repolarization of the cellular membrane.
If we suppose that high potassium level decreases threshold for intercellu-
lar coupling in the Refractory phase, e.g. moves R > 2 → R > 1, then
the FRA model could provide an explanation for the observed pathological
physiological facts.

REFERENCES

[1] J. Jalife et al., Basic Cardiac Electrophysiology for the Clinician,
Wiley-Blackwell, 2002.

[2] D.C. Michaels, E.P. Matyas, J. Jalife, Circ. Res. 58, 706 (1986).
[3] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer,

Berlin 1984; A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization:
A Universal Concept in Nonlinear Science, Cambridge University Press,
Cambridge 2001; S. Strogatz, Sync: The Emerging Science of Spontaneous
Order, Hyperion, New York 2003.

[4] R.E. Klabunde, Cardiovascular Physiology Concepts, accesible via
http://www.cvphysiology.com/Arrhythmias/A005.htm

http://dx.doi.org/10.1161/01.RES.58.5.706 


98 D. Makowiec

[5] S. Abramovich-Silvan, S. Akselrod, Biol. Cybern. 79, 67 (1998).
[6] J.M. Greenberg, S.P. Hastings, SIAM J. Appl. Math. 34, 515 (1978).
[7] H. Berry, N. Fatés, Robustness of the Critical Behaviour in the Stochastic

Greenberg–Hastings Cellular Automaton Model, to appear in IJUC (2011).
[8] G. Bub, A. Shrier, L. Glass, Phys. Rev. Lett. 94, 028105 (2005).
[9] D. Makowiec, Int. J. Mod. Phys. C21, 107 (2010); Acta Phys. Pol. B Proc.

Suppl. 2, 377 (2010).
[10] M.R. Boyett, H. Honjo, I. Kodama, Cardiovascular Research 47, 658 (2000).
[11] E.E. Verheijck et al., Cardiovascular Research 52, 40 (2001).
[12] H. Dobrzynski, M.R. Boyett, R.H. Anderson, Circulation 115, 1921 (2007).
[13] M.E. Mangoni, J. Nargeot, Physiol. Rev. 89, 919 (2008).
[14] R.A. Luke, J.E. Saffitz, J. Clin. Invest. 87, 1594 (1991); J.E. Saffitz,

D.L. Lerner, K.A. Yamada, in: Cardiac Elecrophysiology. From Cell to
Bedside, D.P. Zipes, J. Jalive, (Eds.), Saunders Co., Philadelphia, PA USA,
2004, pp. 181–191.

[15] E.M. Cherry, F.H. Fenton, New J. Physics 10, 125016 (2008).
[16] D. Makowiec, J. Cellular Automata 5, 431 (2010).
[17] N.F. Otani et al., Phys. Rev. E78, 021913 (2008).

http://dx.doi.org/10.1007/s004220050459
http://dx.doi.org/10.1137/0134040
http://dx.doi.org/10.1103/PhysRevLett.94.028105
http://dx.doi.org/10.1142/S0129183110015002
http://dx.doi.org/10.1016/S0008-6363(00)00135-8
http://dx.doi.org/10.1016/S0008-6363(01)00364-9
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.616011
http://dx.doi.org/10.1152/physrev.00018.2007 
http://dx.doi.org/10.1172/JCI115173
http://dx.doi.org/10.1088/1367-2630/10/12/125016
http://dx.doi.org/10.1103/PhysRevE.78.021913

	1 Introduction
	2 Physiological motivation for the FRA model
	3 Formal definitions of the FRA network
	4 Results
	5 Discussion and conclusions

