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We investigate the mechanism of pinching synchronization (complete
synchronization for a fraction of system) for cellular automata, consid-
ered as prototypes of discrete systems with unpredictable behaviour (finite-
distance chaoticity). The pinching synchronization threshold is related to
this chaoticity. Some control problems may be reformulated as targeted
synchronization. In these problems one aims at discovering a protocol that
keeps the distance between two replicas below a certain threshold with the
minimum effort, given some constraints. We have chosen to investigate the
behaviour of two control schemes based on the local number of non-zero
first-order derivatives, taking as reference the “blind” pinching synchroniza-
tion protocol. We have shown that, differently from usual chaotic systems,
one can exploit self-annihilation of defects to obtain synchronization with
a weaker control.
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1. Introduction

Control theory is a set of techniques for making a dynamical system
behave in a desired way by exerting an external effort. In the case of a
minimum effort one speaks of optimal control. It is obviously hard to reach
the optimum limit, but many investigations are devoted to minimize the
control for a desired behaviour. Let us suppose that we have a system
following a discrete-time dynamical evolution x(t + 1) = f(x(t)), that we
write synthetically as x′ = f(x). We want to add a (small) control u = u(t)
such that, after a certain time interval, the trajectory x(t), now evolving as
x′ = f(x) + u, follows a trajectory y(t). In general, the problem of control
of a dynamical system may be split into two parts. We have to bring the
system x sufficiently near to some part of the trajectory y(t), and then
stabilize the trajectory x(t) such that the distance |x(t) − y(t)| is below a
certain threshold.

Chaotic systems are ideal targets for control: their sensitivity to small
changes may be exploited to drive them to the target area [1], after which
chaos may be suppressed in order to make them follow, for instance, a desired
periodic orbit [2].

In particular, if the trajectory y(t) is a natural one for system x (i.e.,
it follows y′ = f(y)), the control for the stabilization of the trajectory only
corresponds to the suppression of the deviations, and can be null if at some
time x(t) = y(t). This is a condition that cannot exactly verify for con-
tinuous chaotic systems, but is reachable for discrete systems. We shall
deal here with such systems, so we only face the problem of synchronizing
a replica with a “drive” system. This type of synchronization can be called
master-slave, identical or replica synchronization [3].

While in the usual studies about synchronization one exerts little atten-
tion to the optimisation of coupling, when formulated as a control problem
this becomes a crucial issue.

There is a certain interest in modelling extended systems using discrete
units, in many cases Boolean ones. Examples are genetic networks [4], some
formalisation of neural networks [5], DNA replication and translation and
VLSI digital circuits.

A discrete dynamical system is formed by units (nodes, sites) that take
discrete values and evolve in discrete time steps. Cellular Automata (CA) [6]
are the typical mathematical examples of such systems, even though one may
be also interested in non-homogeneous contact networks and non-parallel
dynamics [7].
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Cellular automata are usually defined on a graph or a regular lattice, but
may easily be extended to include mobile agents. The modelling of a sys-
tem using cellular automata is conceptually much simpler than those using
partial derivatives, and the evolution of such a system is easily performed
by a digital computer, without rounding errors.

However, for such systems continuity and smoothness (differentiability)
do not apply. It is therefore hard to extend the usual techniques used in
control theory [8] and to define quantities like Lyapunov exponents and
chaotic trajectories. It is still possible to define the derivatives of discrete
systems [9], which prove useful in synchronization investigations [10].

In the case of replica synchronization, the “minimal strength” needed
to synchronize a system is related to its chaoticity, defined by the largest
Lyapunov exponent in low-dimensional systems. For extended systems, the
correspondence between the minimal strength and Lyapunov exponents may
break down [11].

In synchronization experiments, the “force” is generally applied blindly,
without any relation with the dynamics. The corresponding synchroniza-
tion effect is analogous to a directed percolation phase transition [12]. The
two systems synchronize when their difference goes to zero. Their differ-
ence grows due to their “chaotic” dynamics, along the directions identified
by the Jacobian matrix of the evolution rule. The synchronization “pres-
sure” reduces the paths along which a difference can propagate. When this
reduction overcomes the chaotic growth, the system synchronizes.

In control problems, one wants to exploit the knowledge about a system.
It is, therefore, analogous to a synchronization problem of two different sys-
tems with a “targeted” force, that tries to “kill” the growing directions of the
difference as soon as possible. We show how the concept of Boolean deriva-
tive and that of Boolean Jacobian matrix can be used to achieve this goal.

The result is however rather surprising: the control efforts should con-
centrate on the regions exhibiting less distance among replicas, while chaos
can be exploited to “self-synchronize” the systems.

2. Synchronization and Lyapunov exponent
Let us start considering the following asymmetric coupling for a contin-

uous one-dimensional map f(x) [13]

x′ = f(x) ,
y′ = (1− p)f(y) + pf(x) , (1)

with x = x(t), x′ = x(t + 1) (idem for y) and 0 ≤ p ≤ 1. Let assume that
f(x) is chaotic with Lyapunov exponent λ, and that x(0) 6= y(0). Then, x(t)
is always different from y(t) for p = 0, while for p = 1 x and y synchronize
in one time step.
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For a vanishing distance h = |z|, z = x − y, we can expand f(y) =
f(x) +

(
df
dx

)
x
(y − x) and obtain

h′ = (1− p)
∣∣∣∣ dfdx

∣∣∣∣
x

h . (2)

By integrating Eq. (2), one obtains

h(t) = h(0) exp (t (log(1− p) + λ(t))) ,

where

λ(t) =
1
t

t∑
t′=0

log
(
df

dx

)
x(t′)

is the finite-time Lyapunov exponent of the map f on the trajectory x(t). In
chaotic systems this exponent does not generally depend on the trajectory,
except for very special initial conditions (like unstable fixed points, etc.).

In the limit t → ∞, the synchronization threshold pc for which the
asymptotic distance h(∞) = 0 looses its stability (the synchronization
threshold) is therefore related to the Lyapunov exponent λ = limt→∞ λ(t)

pc = 1− exp(−λ) . (3)

In what follows we shall try to develop similar relations for CA. We
begin with a brief review of the definition of maximum Lyapunov exponent
for CA based on a linear expansion of the evolution rule [14]. We then
present a synchronization mechanism and show that the distance between
two realizations goes to zero in a critical manner at pc [10]. The numerical
experiments show a relation between the synchronization threshold and the
maximum Lyapunov exponent. We restrict our study to one dimensional,
totalistic Boolean cellular automata with a limited number of inputs, since
their number is reasonably manageable and their evolution can be efficiently
implemented.

A Boolean CA F of range r is defined as a map on the set of configu-
rations {x} with x = (x0, . . . , xN−1), xi = 0, 1, and i = 0, . . . , N − 1 such
that

x′ = F (x) ,

where x = x(t), x′ = x(t+1) and t = 0, 1 . . . . The map F is defined locally
on every site i as

x′i = f({xi}r) ,



Chaos, Synchronization and Control in Cellular Automata 13

where {xi}r = (xi, . . . , xi+r−1) is the neighbourhood of range r of site i at
time t, assuming periodic boundary conditions. For totalistic CA, the local
function f is symmetric and depends only on s defined by

s({xi}r) =
r−1∑
j=0

xi+j .

That is x′i = f(s({xi}r)). It is useful to introduce the following operations
between Boolean quantities: the sum modulo two (XOR), denoted by the
symbol ⊕, and the AND operation, which is analogous to the usual multi-
plication and shares the same symbol. These operations can be performed
between two configurations component by component. We introduce the dif-
ference, or damage, z = x⊕y, whose evolution is given by z′ = F (x)⊕F (y)
and we define the norm h of z as h = |z| = (1/N)

∑
i xi ⊕ yi.

A function f(xi, . . . , xj , . . . , xi+r) is sensitive to its j-th argument for a
given neighbourhood ({xi}r) if the Boolean derivative

∂f

∂xj

∣∣∣∣
{xi}r

= f(xi, . . . , xj , . . . )⊕ f(xi, . . . , xj ⊕ 1, . . . )

is 1. The Jacobian matrix J of F is an N ×N matrix with components

Ji,j(x) =
∂f

∂xj

∣∣∣∣
{xi}r

.

J is circulant matrix with zeroes everywhere except possibly on the main
diagonal and the following r − 1 upper diagonals.

It is possible to “Taylor expand” a Boolean function around a given point
using Boolean derivatives [14]. To first order in |z| we have

F (y) = F (x)⊕ J(x)� z , (4)

where � denotes the Boolean multiplication of a matrix by a vector. Com-
pared to algebraic multiplication of a matrix by a vector, the sum and mul-
tiplication of scalars are replaced by the XOR and the AND operations re-
spectively. Using Eq. (4) we may approximate the evolution of the damage
configuration z by

z′ = J(x)� z .

However, |z| grows at most linearly with t since a damage cannot spread to
more than r neighbours in one time step: a fixed site i at time t+ 1 can be
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damaged if at least one of its r neighbours at time t is damaged, but if more
than one of the neighbours is damaged, the damage may cancel. Since

z′i =
i+r−1⊕

j=i

Ji,j(x)zj ,

z′i = 1 if Ji,j(x)zj = 1 on an odd number of sites. In order to account for
all possible damage spreading, we choose to consider each damage indepen-
dently. If, at time t, m damaged sites are present, we consider m replicas
each one with a different damaged site. On each replica, the damage evolves
for one time step, without interference effects and so on.

This procedure is equivalent to choosing a vector ξ(0) = z(0) that evolves
in time according to

ξ′ = J(x)ξ , (5)

where now the matrix multiplication is algebraic. The components ξi are
positive integers that count the number of ways in which the initial damage
can spread to site i at time t on the ensemble of replicas.

We define the maximum Lyapunov exponent λ of the cellular automaton
F by

λ
(
x0
)

= lim
T→∞

lim
N→∞

1
T

log

(∣∣ξT
∣∣

|ξ0|

)
,

where |ξ| may be taken as the Euclidean norm or as the sum of its compo-
nents.

We now discuss a synchronization mechanism for CA. Starting with two
initial configurations chosen at random x(0) and y(0) we propose that

x′ = F (x) ,
y′ = (1⊕ S(p))F (y)⊕ S(p)F (x) ,

where S(p) is a Boolean random diagonal matrix with elements si(p) that
are one with probability p and zero with probability 1 − p (they change at
each time step); 1 is the identity matrix and 1 ⊕ S(p) is the equivalent of
1 − p (bit by bit) of Eq. (1). On the average, y′i will be set to the value of
x′i = f({xi}) on a fraction p of sites.

The evolution equation for the difference z = x⊕ y is

z′ = (1⊕ S(p)) [F (x)⊕ F (y)] . (6)

The control and order parameters are p and h(p) = limt→∞ limN→∞ |z(t)|
respectively. We say that x, the driver, and y, the driven system, synchro-
nize when h(p) = 0. For p = 0 both systems evolve independently, while for
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p = 1 they synchronize in just one step; we expect then to find a synchro-
nization threshold pc. This behaviour is shared by all the CA with complex
non-periodic space-time patterns. All others synchronize for p ' 0. This
can be conversely expressed by saying that all CA that synchronize with a
non-trivial pc exhibit complex non-periodic space-time patterns.

In the limit of vanishing distance,

z′ ' (1⊕ S)� Jz , (7)

where the matrix product Ju is computed modulo two. The simplest mean-
field approximation applied to this last equation leads to an equivalent of
Eq. (2).

For totalistic linear rules, whose evolution rule is given by

f({xi}r) =
r−1⊕
j=0

xi+j ,

the synchronization equation (6) is equivalent to the dilution (with proba-
bility 1 − p) of the rule. The presence of a single absorbing state and the
absence of other conserved quantities (i.e. number of kinks) strongly sug-
gests that the synchronization transition belongs to the directed percolation
universality class [12].
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Fig. 1. Relationship between pc and λ for all CA with range r = 4, 5, 6 (mark-
ers) and complex space-time patterns. The curves correspond to various analytic
approximations, as specified Ref. [10] from which this figure is taken.
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In order to illustrate that the relationship between the synchronization
threshold and our definition of the Lyapunov exponent holds also for discrete
systems, we report in Fig. 1 the values of the couple (pc, λ) for all totalistic
CA with r = 4, 5, 6 and a non-trivial value of pc, from Ref. [10].

(a) (b) (c)

t

i

t

i

t

i

Fig. 2. Typical space-time patterns of “chaotic” rules. Time t runs from top to
bottom, space i from left to right, sites in state one are marked in grey/yellow,
sites in state 0 are marked in black. (a) r = 3, R = 10; (b) r = 3, R = 6; (c)
r = 6, R = 30.

3. Control of cellular automata

In synchronization problems, synchronization is applied “blindly”. In
control problems, the goal is that of exploiting available information in order
to apply a smaller amount of control (or achieve a stronger synchronization).

We study here the application of synchronization to cellular automata
(Fig. 2), i.e., Eq. (6) where the effect of synchronization si ∈ {0, 1} may
depend on the position i (through xi) [15].

As above, the efficacy of synchronization (order parameter) is the asymp-
totic distance h = (

∑
i zi)/N , while the effort is the fraction of synchronized

sites k = k(p) = (
∑

i si)/N .
It is possible in principle to find the absolute minimum of k by computing

the effects of all possible choices of si, given an initial configuration x0 =
x(0). This constitutes a great computational load. Since we are interested
in possible real-time applications, we impose that the choice of si = 1 may
only depend on local information: the neighbourhood configuration and a
t = 1 time window.

We investigate three possible way of implementing a control s(p):
(1) blindly with probability p (standard pinching synchronization); in this
case k = p. (2) with a probability p proportional to the sum of the first-order
derivatives and (3) with a probability p inversely proportional to the sum of
first-order derivatives.
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In order to keep the implementation simple, instead of fixing k and com-
puting the probability p, we let p be a free parameter, and measure the
actual fraction of synchronized sites k and the average asymptotic distance
h. The previous schemes only require information about x. If information
about y or about the damage distribution u is available, the cost k is re-
duced by a factor h, since in this case we can apply the rule only when it is
needed.

Simulation results are presented in Fig. 3. As expected, for linear rules
there is no influence of the type of control, since all configurations have
the same number of derivatives. For most nonlinear rules, the observed be-
haviour is the opposite of what is expected for continuous systems. Control 2,
that minimizes the distance h for vanishing number of damages according
to Eq. (7), gives worse results than the blind control 0. Control 1, inversely
proportional to the sum of first-order derivatives, gives better results than
the blind control 0. This result holds also for larger neighbourhoods, but
not for all rules: there are CA rules for which control type 3 is not the best
one (e.g. rules 5T45, 6T60 and 7T28), even if the differences are minimal.
At present, we have no explanation for this behaviour. There are also non-
chaotic rules, like rule 3T12 (the majority rule 232 in Wolfram notation)
for which the above recipe fail: in the pattern ...001100110011... all sites
has two non-zero derivatives and are therefore less affected by control 1, so
by applying control 1 this state is actually favoured, and synchronization
using control based on derivatives is worse than “blind” control. However,
the large majority of chaotic rules follow the general pattern that control 1
is better than control 0 which is better than control 2.
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Fig. 3. (a) For linear rules, r = 3 and R = 10, no influence of different type
of controls (all configurations have the same number of derivatives). (b) For a
nonlinear CA, r = 3 and R = 6, control 2 is worse and control 3 is better than
blind one. (c) The same result holds for larger neighbourhood, r = 6 and R = 30.
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This surprising effect may be due to the fact that defects self-annihilate,
as shown in Fig. 4. Our interpretation is the following, using a stochas-
tic approximation of a chaotic dynamics: due to the fact that the state
space is finite (only two values) and that the rule is chaotic, there is a finite
probability that a patch of finite amplitude will spontaneously synchronize.
Therefore, an effective strategy is that of applying the pinching synchroniza-
tion mainly to limit the spreading of the defects. Sites with a small number
of derivatives are “natural boundaries” of chaotic patches, so concentrating
the application of control on such sites gives an optimised way of limiting
damage spreading, while the self-annihilation of defects is responsible for the
actual synchronization of patches.

control 1 control 2 control 3

t

i

t

i

t

i

Fig. 4. Time evolution of defects for different types of control, Time t runs from top
to bottom, space i from left to right, sites with a defects are marked in grey/yellow,
synchronized sites are marked in black. Here r = 3 and R = 6, all cases starting
from the same configuration. The effective probability p has been chosen so to
have the same average control k in the three cases. One can notice that clusters of
defects for control 3 are less dense than those for control 1 and 2.

In other words, we can exploit the characteristics of cellular automata
(and other stable chaotic systems) in order to achieve a better control by
exploiting the local contraction of the evolution rule.

4. Conclusions

Spatially extended stable systems (namely cellular automata) may ex-
hibit unpredictable behaviour (finite-distance chaoticity). The pinching syn-
chronization threshold is related to this chaoticity. On the other hand,
Boolean derivatives and discrete Lyapunov exponents may be used to char-
acterize this kind of chaos.
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In the control problem, one aims at discovering a protocol that keeps
the distance h below a certain threshold with the minimum “effort”, given
some constraints. We have chosen to investigate the behaviour of two control
schemes based on the local number of non-zero first-order derivatives, taking
as reference the “blind” pinching synchronization protocol.

We have shown that, differently from usual chaotic systems, one can
exploit self-annihilation of defects to obtain synchronization with a weaker
control, corresponding to the case in which the control is inversely propor-
tional to the number of non-zero derivatives.
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