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The mechanisms of sprout formation and branching during sprouting
angiogenesis are only partially understood and mostly attributed to nonlo-
cal signals mediated by the heterogeneous distribution of vascular endothe-
lial growth factor (VEGF). Here, we show that purely local mechanisms
can account for angiogenic network formation. In particular, we exam-
ine the effects of homogeneous stimulation by VEGF on local endothelial
cell–cell interactions and on interactions between endothelial cells and the
microenvironment. We adopt a cell-based mathematical modeling approach
(lattice-gas cellular automaton) and fit our model to image data obtained
from in vitro experiments tailored to homogeneous conditions. This ap-
proach reveals the basal effects of (homogeneous) VEGF stimulation, in
particular increased movement coordination and cell–cell adhesion but no
significant change in contact guidance and extracellular matrix remodeling.
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1. Introduction

Angiogenesis is the process of novel blood vessel formation by sprouting.
During angiogenesis sprouts of endothelial cells grow from existing vessels in
response to biochemical signals. Angiogenic sprouting is traditionally sub-
divided into different phases [1]. First, endothelial cells locally degrade the
basement membrane (composed of extracellular matrix ingredients), through
the activity of proteases. Second, under the influence of VEGF, an endothe-
lial cell adopts the tip cell phenotype and migrates into the surrounding
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tissue. Stalk cells that are attached to the tip cell follow and proliferate,
leading to the extension of the vascular sprout. Third, the growing sprout
forms a lumen. In the living organism, perivascular cells are recruited to the
newly formed blood vessel leading to its maturation and stabilization. An-
giogenesis plays a key role during wound healing and different pathological
processes, e.g. tumor formation, inflammation and ocular diseases [2, 3, 4].
Unraveling the precise biological mechanisms governing angiogenesis, can
lead to improved treatments by helping to identify potential drug targets.

A multitude of mechanisms is active during angiogenesis, including inter-
cellular adhesion, contact guidance, extra-cellular matrix remodeling and
inter-cellular movement coordination [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The prevail-
ing hypothesis is that angiogenic sprouting is regulated through contact-
inhibited chemotaxis in combination with VEGF gradients [6, 8, 12, 13, 14],
i.e. angiogenic sprouting arises due to long-range interactions. However, in
vitro assays excluding long-range interactions also exhibit angiogenic sprout-
ing [1]. There one observes that direct cell–cell and cell-environment interac-
tions, especially interactions between endothelial cells and the extracellular
matrix, can also drive angiogenic sprouting under homogeneous VEGF ad-
ministration. However, the precise regulation of sprouting on the basis of
local mechanisms is still not understood.

Here, we examine the effects of homogeneous VEGF on local interactions
of endothelial cells during early in vitro angiogenesis with a mathematical
model. These effects are reflected in the parameter values of four cellular in-
teractions. We apply a gradient-based parameter estimation technique [15]
and fit the model to image data obtained from in vitro experiments. In [15]
in vitro angiogenic sprouting was only used for demonstration of the param-
eter estimation technique without regard for specific biological questions.
In this article, we focus instead on applying the parameter estimation tech-
nique to answer the specific biological question stated above, the effects of
homogeneous VEGF on local interactions of endothelial cells. We utilize im-
age data from two different sets of in vitro experiments: with and without
additional homogeneous VEGF administration. In particular, the number
and lengths of developing sprouts, and the radius of the evolving pattern are
compared in simulations and experiments.

The article is structured as follows. First, we describe the setup of the
in vitro experiments which provide the experimental image data. Next, we
introduce the mathematical model, address the scaling of the model and
define the observables used for parameter estimation. We then study the
influence of VEGF on the interplay of cell interactions during angiogenesis
in vitro sprouting assays. Finally, we discuss the biological interpretation of
our results.
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2. In vitro experiments

Dextran-coated Cytodex 3 microcarriers (Amersham Pharmacia Biotech,
Piscataway, NJ) were coated with human umbilical vascular endothelial cells
(HUVEC; Lonza, Cologne) essentially as described by [1]. Beads were em-
bedded in fibrin gel in 96-well plates consisting of 2.5 mg/ml of fibrinogen
(Sigma, Steinheim, Germany), 0.1 units/ml of aprotinin (Sigma) and EGM-2
(with 2% FCS). Clotting of fibrinogen was induced by adding 8 µl of 10 U/ml
thrombin (Sigma) per well. Five thousand human skin fibroblasts Detroit
551 (Promocell, Heidelberg, Germany) were plated on top of the fibrin gel
to provide growth factors necessary for endothelial cell growth and survival.
Cultures were incubated at 37◦C in atmosphere containing 5% CO2, 21%
O2, and were monitored for a maximum of 3 days. Medium was changed
every other day. Experiments were performed in regular endothelial growth
medium (EGM-2 with 2% FCS) with or without addition of 1 µl recombinant
VEGF (2 µg/ml; Lonza). Two independent experiments were performed un-
der the same conditions (Table I). Experimental image data were obtained
by bright-field microscopy after 48 or 72 hours, respectively. Sprouts grow-
ing away from the bead are shown in Fig. 1 (a). The following parameters

(a) (b)

(c) (d)

Fig. 1. Automatic extraction of observables from experimental images. Application
of the automatic process to an example image; (a)–(d) show the subsequent image
processing steps, the observables are then calculated from image (d). (a) Original,
experimental image, (b) smoothing with an anisotropic diffusion filter and edge
detection with the Sobel operator, (c) morphological closing and opening, removal
of disconnected parts, (d) morphological thinning.
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were determined: cumulative length of all sprouts, number of sprouts, and
maximum distance between the center of the bead and the tip of the longest
sprout. We obtained 25 different data sets (i.e. data from 25 different beads)
from experiment 1, and 10 data sets from experiment 2.

TABLE I

Time and number of data sets for both experiments.

Time in h Number of data sets

Experiment 1 48 25
Experiment 2 72 10

3. Mathematical model

We employ a LGCA (lattice-gas cellular automaton) model [16,17,18,19,
20, 21] to represent the interactions of endothelial cells with each other and
the (artificial) extra-cellular matrix in the in vitro assay (see Sec. 2). This
approach excludes a detailed description of the actual biological realization
of cell interactions. Instead we focus solely on their effect on endothelial cells
and the extra-cellular matrix. Here, this abstract description is sufficient,
since the purpose of our mathematical model is to study the influence of
VEGF on the effects of cell interactions and not on the specific details of
underlying molecular mechanisms.

Specifically, we adopt the lattice-gas cellular automaton model from [15].
In our model, the extra-cellular matrix is considered as an additional lat-
tice with states that represent the local orientation of ECM-fibers. In the
model we are treating the results of extra-cellular matrix dissolution and
reassembly as changes in the local orientation of ECM-fibers. An overview
of respective mechanisms and parameters considered in the mathematical
model is presented in Table II.

The experimental in vitro assay is very thin compared to its length and
width (height 0.5 mm, width 5 mm and length 5 mm) and the observed pat-
terns (see previous section) are two-dimensional. A two-dimensional model
is therefore a sufficient approximation. Initial conditions define a fully oc-
cupied circular area with a radius of 5 nodes at the center of the lattice. In
each time step every node in this area is refilled to mimic the experimental
conditions (a reservoir of cells at the bead in the center of the gel).
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Fig. 2. Node of hexagonal two-dimensional lattice (example). There are six velocity
channels c0, c1, c2, c3, c4, c5 and one rest channel c6, respectively. Filled circles
denote occupied channels.

Here, we use a LGCA with two-dimensional hexagonal lattice L with six
velocity channels:

c0 := (1, 0)T , c1 :=
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and one rest channel c6 := (0, 0)T . In the model, endothelial cells are de-
scribed by states η(r) = (η0(r), . . . , η6(r)) ∈ E = {0, 1}7 at lattice nodes
r ∈ L.

The transition rule in a LGCA model consists of two subsequent steps:
an interaction and a migration step. Interactions are specified by probability
distributions P (ηNr → η′) with η′ ∈ E , and ηNr ∈ E7 giving the configuration
at r and in the next-neighbor neighborhood Nr := {r + ci| i = 0, . . . , 5}. In
the following, we define the mechanisms (see Table II) included in the model,
namely cell–cell adhesion, movement coordination of endothelial cells,
contact guidance along the extracellular matrix and remodeling of the
extra-cellular matrix by endothelial cells [4, 22,23].

Endothelial cells in vitro “stick” to each other by cell adhesion. In the
mathematical model we describe this interaction by a mechanism which
gives cells a preference to stay in the neighborhood of other cells, i.e. choos-
ing their movement direction J(η′) :=

∑5
i=0 η

′
ici, depending on ρNr :=∑5

i=0

∑6
j=0 ηj(r+ ci)ci, which gives the directions towards the highest num-

ber of cells in the neighborhood (illustrated in Fig. 3 (a))

Pad

(
ηNr → η′

)
=

exp (βad 〈ρNr , J (η′)〉)
Zad

,
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TABLE II

Overview of model mechanisms and parameters.

Mechanism Model realization Parameter

Adhesion Flux toward higher βad

concentration of cells

Movement coordination Flux parallel to the βmov

flux of the neighbors

Contact guidance Flux parallel to βcon

ECM-orientation

Remodeling ECM-reorientation βrem

parallel to cell flux

(a) (b)

(c) (d)
Fig. 3. Illustration of model mechanisms. Effects of adhesion (a), movement coor-
dination (b), contact guidance (c) and ECM remodeling (d) during one time step.
Circles indicate endothelial cells at rest. Moving endothelial cells are indicated by
ovals; arrows indicate the direction of motion. Straight lines indicate extra-cellular
matrix fibers.

the parameter βad ∈ R controls the adhesivity in the model and Zad is a
normalization term. During angiogenesis endothelial cells move collectively.
This is reflected in the model by synchronizing the cells’ movement direc-
tions J(η′) with their neighbors’ JNr :=

∑5
i=0

∑6
j=0 ηj(r+ci)cj . We call this
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mechanism movement coordination (Fig. 3 (b)). It is controlled by the pa-
rameter βmov and the corresponding transition probability Pmov(ηNr → η′)
is given by

Pmov

(
ηNr → η′

)
=

exp (βmov 〈JNr , J(η′)〉)
Zmov

,

Zmov is a normalization term. Beside cell–cell interactions we model in-
teractions between endothelial cells and the extra-cellular matrix, contact
guidance and remodeling. Here, the extra-cellular matrix is considered as
an additional lattice with θ ∈ [0, π] at every node. The spatial orientation of
the extra-cellular matrix at node r is given by E(θ(r)) := (cos(θ), sin(θ))T .
Endothelial cells are guided by the extra-cellular matrix by contact guid-
ance. In the model contact guidance tries to synchronize the direction of
movement of the cells J(η′) with the spatial orientation E(θ(r)) of the extra-
cellular matrix (Fig. 3 (c)) and is described by the corresponding transition
probability controlled by the parameter βcon

Pcon

(
ηNr → η′

)
=

exp (βcon| 〈E (θ(r)) , J (η′)〉 |)
Zcon

,

Zcon is a normalization term. Endothelial cells remodel the extra-cellular
matrix by aligning it parallel to their direction when they move through it.
In the model, remodeling of the extra-cellular matrix is controlled by the
parameter βrem, which tries to synchronize the spatial orientation E(θ′(r))
of the extra-cellular matrix with the movement direction J(η(r)) of the cells
(Fig. 3 (d))

Prem(θ(r)→ θ′(r)) =
exp (βrem 〈E (θ′) , J(η(r))〉)

Y
, (1)

Y is a normalization term. The interactions Pad, Pmov and Pcon are inde-
pendent from each other per construction. Hence we can combine them by
multiplication to obtain the interaction probability P (ηNr → η′):

P
(
ηNr → η′

)
= Pad

(
ηNr → η′

)
Pmov

(
ηNr → η′

)
Pcon

(
ηNr → η′

)
. (2)

Then, the interaction step consists of the application of both P (ηNr → η′),
which depends on the parameters βad, βmov and βcon, and Prem(θ(r) →
θ′(r)), which depends on βrem to obtain new states η′(r) and θ′(r) for all
nodes r. The migration step is only applied to the cells (ECM fibers do not
migrate in the model). The new states η′′(r) after migration are given by

η′′i (r) := η′i(r − ci) , i = 0, . . . , 6

for all nodes r ∈ L.
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Scaling: One node in the model is defined as 15µm in diameter. For
the first experiment, image data was obtained after 48 hours and for the
second experiment after 72 hours, respectively. Based on the image data,
we estimate that endothelial cells move with an average speed of ≈ 7µm or
0.5 nodes per hour. Accordingly, one time step in the model corresponds to
2 hours in the experiment.

4. Data analysis

Since we want to quantitatively compare experiments with simulations
we need to introduce observables which can be measured in both. Here we
use the following observables: summed sprout length, average sprout num-
ber and average pattern radius. A sprout is defined as a chain of cells,
see Fig. 1. Values of experimental observables are automatically obtained
from experimental images (see Fig. 1). Parameters in the LGCA model are
calibrated to match these observables with the parameter estimation algo-
rithm developed in [15], which finds globally optimal parameters in LGCAs
by a two-phase optimization algorithm. In the first phase, local optima
are identified through gradient-based optimization using Algorithmic dif-
ferentiation to calculate the necessary gradient information. In the second
phase, a multi-level single-linkage method is used for global optimization
of the parameter set. In this parameter estimation algorithm, the experi-
mental observables are used as constants and we can directly use the val-
ues we automatically measured from experiments. However, to apply the
cited parameter estimation algorithm, a functional description in the form
of simple functions (here this means addition and multiplication) of the
observables measured from simulations is necessary. In the following, we
construct this functional description for our observables based on geometric
moments [24, 25, 26]. Let I(x, y) be a binary image of dimension n × m
(n,m ∈ N, x ∈ [0, . . . , n − 1], y ∈ [0, . . . ,m − 1]).We can a obtain a binary
images from the two-dimensional LGCA model introduced in the previous
section by setting

I(x, y) =

 1 if
6∑

i=0
ηi(r) > 0

0 if else
.

With r := A−1(x, y)T , A−1 gives the coordinates transformation between
the image and the hexagonal lattice and has the form

A−1 =
1
2

(
2 −1
0
√

3

)
.
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The geometric moment mpq of the order of p-q with p, q ∈ N is defined as

mpq =
n−1∑
x=0

m−1∑
y=0

xpyqI(x, y) .

Similarly, the translation-invariant central geometric moment µpq is de-
fined as

µpq =
n−1∑
x=0

m−1∑
y=0

(x− x̄)p(y − ȳ)qI(x, y) ,

with

x̄ =
m10

m00
, ȳ =

m01

m00
.

These geometric moments do not contain information about spatial correla-
tions between neighboring nodes. However, such information is required for
detecting sprouts. Therefore, we modify the geometric moments as

µ′pq,M =
n−1∑
x=0

m−1∑
y=0

(x− x̄)p (y − ȳ)q NM (x, y) ,

NM (x, y) : =
∏

(x′,y′)∈N (x,y)

I
(
x′, y′

)M(x′−x,y′−y) (1− I(x′, y′)
)(1−M(x′−x,y′−y))

,

where N (x, y) = {(x, y) + (x′, y′)|(x′, y′) ∈ N̄} and

N̄ := {(0, 0), (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)} .

Furthermore, the binary mask M(x, y) specifies the desired neighborhood
configurations. Only sites (x, y) for which neighborhood I(x′, y′) is equal
to M(x′ − x, y′ − y) for all (x′, y′) ∈ N (x, y) contribute to NM (x, y). In
the following, we define sprouts as chains of connected cells, and construct
our observables summed sprout length and number of sprouts based on the
modified moments of the order of 0-0. The idea is essentially to count all
nodes with a predefined amount of occupied neighbors. In the following,
we express binary masks M by ordered tuples M̄ = {M0, . . . ,M6} with the
following relation between them
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M(x, y) =



M̄0 if (x, y) = (0, 0)
M̄1 if (x, y) = (1, 0)
M̄2 if (x, y) = (1, 1)
M̄3 if (x, y) = (0, 1)
M̄4 if (x, y) = (−1, 0)
M̄5 if (x, y) = (−1,−1)
M̄6 if (x, y) = (0,−1)

.

Thus, on a hexagonal lattice, the summed sprout length, which is the sum
of the individual lengths of each sprout, lsprouts, is given by

lsprouts =
∑
Mj

µ′00,Mj ,

with M̄ j , j = 0, . . . , 5:

M̄0 = (1, 1, 0, 0, 1, 0, 0) , M̄1 = (1, 0, 1, 0, 0, 1, 0) , M̄2 = (1, 0, 0, 1, 0, 0, 1) ,
M̄3 = (1, 1, 1, 0, 0, 0, 0) , M̄4 = (1, 0, 1, 1, 0, 0, 0) , M̄5 = (1, 0, 0, 1, 1, 0, 0) ,
M̄6 = (1, 0, 0, 0, 1, 1, 0) , M̄7 = (1, 0, 0, 0, 0, 1, 1) , M̄8 = (1, 1, 0, 0, 0, 0, 1) ,
M̄9 = (1, 1, 0, 1, 0, 0, 0) , M̄10 = (1, 0, 1, 0, 1, 0, 0) , M̄11 = (1, 0, 0, 1, 0, 1, 0) ,
M̄12 = (1, 0, 0, 0, 1, 0, 1) , M̄13 = (1, 1, 0, 0, 0, 1, 0) , M̄14 = (1, 0, 1, 0, 0, 0, 1) .

Here, a node is counted as part of a sprout if it is occupied (there is at least
one cell at the node) and has exactly two occupied neighbors. The sum over
all such nodes determines the total length of all sprouts. Note, that sprout
branching points are not counted as part of sprouts. The number of sprouts
(= number of tips) nsprouts is

nsprouts =
∑
Mj

µ′00,Mj ,

with M̄ j , j = 0, . . . , 5:

M̄0 = (1, 1, 0, 0, 0, 0, 0), M̄1 = (1, 0, 1, 0, 0, 0, 0), M̄2 = (1, 0, 0, 1, 0, 0, 0),

M̄3 = (1, 0, 0, 0, 1, 0, 0), M̄4 = (1, 0, 0, 0, 0, 1, 0), M̄5 = (1, 0, 0, 0, 0, 0, 1).

Here, a node is counted as a tip if it is occupied and has exactly one occupied
neighbor. The sum over all these nodes determines the number of sprouts.



A Lattice-gas Cellular Automaton Model for in Vitro Sprouting Angiogenesis 109

For the calculation of the total sprout length and the sprout number only
occupied nodes which are connected to the bead are considered, i.e. detached
cells are not counted. Additionally, we define an observable called pattern
radius which is the maximum distance between the center of the bead and
any tip. We define the squared error F (β)

F (β) =
2∑

i=0

wi(fi(β)− gi)2 , (3)

with the simulation observables fi, experimental observables gi, weights wi

and the parameters β = (βad, βmov, βcon, βrem). The observables are the
summed sprout length (i = 0), the number of sprouts (i = 1) and the pattern
radius (i = 2). We characterize the change of the squared error F (β) under
parameter changes around a local minimum β with the quadratic function
Fquad(β̃i) defined by

Fquad

(
β̃i

)
=

(
β̃i − βi

)2

F (β)
∂F (β)
∂βi

, (4)

with β = (βad, βmov, βcon, βrem) and β̃i, βi ∈ (βad, βmov, βcon, βrem).

(a) (b)
Fig. 4. Example: node types. Sub-figure (a) shows the four different node types
that can occur. There are two types of occupied nodes used to calculate the ob-
servables: tip nodes (black) and sprout nodes (dark gray). In addition, there are
occupied nodes that are neither sprout nor tip nodes (light gray) and empty nodes
(white). Sub-figure (b) illustrates two nodes marked as 1 and 2, and their neigh-
borhoods 1′ and 2′, respectively. Node 1 is a tip node because there is only one
occupied node in its neighborhood while node 2 is sprout node because there are
exactly two occupied nodes in its neighborhood.

5. Results and discussion

We have modeled the early phase of in vitro sprouting angiogenesis under
homogeneous VEGF stimulation and quantitatively compared experiments
and simulations. Our model contains no long-range interactions, only local
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interactions of endothelial cells with each other and with their microenviron-
ment are considered. Fig. 5 shows simulation patterns for control and VEGF
group, respectively. The development of distinct sprouts can be observed in
both cases. In the VEGF case, length and number of sprouts are larger
than in the control group. In Fig. 6 the values of the observables, number of
sprouts, summed sprout length and pattern radius, are compared between
experiment and simulation for the control group and VEGF. Suitable param-
eter sets for simulations were obtained by a recently developed parameter
estimation method [15]. Simulation results were obtained by averaging over
500 simulation runs with the same parameter sets. The experimental data
was obtained by averaging over 25 data sets (experiment 1) and over 10 data
sets (experiment 2), respectively.

(a) (b)

Fig. 5. Simulations for the control group and VEGF stimulation. Simulations use
the parameter values obtained with parameter estimation [15]. We show simu-
lations for the control group (a) and VEGF stimulation (b). Nodes containing
endothelial cells are shown grey, the intensity indicates cell density. Empty nodes
are shown in white. The bead in the center is displayed in dark grey. Note, that
for the majority of sprout nodes only one channel is occupied.

In both experiments, there is a good agreement between the values of
observables (summed sprout length, average sprout number and average
pattern radius) of the simulation the experimental data for the control and
the VEGF groups. In experiment 2 all three observables show no significant
difference between experiment and simulation. In experiment 1, there is
no significant difference for the values of the summed sprout length in the
control and VEGF group, while for the other two observables there is either
no significant difference or only slight underestimation of the values.

Fig. 7 exhibits the effect of VEGF on the model parameters, i.e. on the
strength of the different cell interactions. It can be observed that in exper-
iment 1 VEGF increases the movement coordination parameter by ≈ 25%
compared to the control group and the cell adhesion parameter by ≈ 10%
(Fig. 7 (a), (b)). In experiment 2, VEGF increases the movement coordi-
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Experiment 1

(a) (b) (c)

Experiment 2

(d) (e) (f)

Fig. 6. Comparison of in vitro experiments (E) and simulations (S). Simulations use
the parameter values obtained with parameter estimation [15]. Figures (a)–(c) show
comparisons with data from experiment 1 and figures (d)–(f) with experiment 2.
Simulation results are obtained by averaging over 500 simulation runs with the
same parameter sets; the error bars indicate the standard error within a 99%
confidence interval. Experimental data was obtained by averaging over 25 data
sets (experiment 1) and over 10 data sets (experiment 2), respectively; error bars
represent the standard deviation. Averaged summed sprout lengths and averaged
radii are given in µm.
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Experiment 1

(a) (b) (c) (d)

Experiment 2

(e) (f) (g) (h)

Fig. 7. Comparison of the control group (C) and VEGF (V). The parameter values
for cell adhesion were obtained with parameter estimation [15] and normalized
such that the adhesion parameter value for the control group equals 1. Number
of sprouts, summed sprout length and pattern radius were used for parameter
optimization. Bars are the parameter ranges of βi ∈ (βad, βmov, βcon, βrem) for
which Fquad(βi) ≤ 1 with Fquad(βi) defined by (4). Short bars indicate parameters
with high sensitivity to changes while large bars indicate those with low sensitivity.
Figures (a)–(d) show results for experiment 1 and figures (e)–(h) for experiment 2,
respectively. In the VEGF case an increase of ≈ 10% in cell adhesion (a) and
of ≈ 25% in movement coordination (b) can be observed in experiment 1. In
experiment 2, one observes an increase of ≈ 8% in cell adhesion (e) and of ≈
27.5% in movement coordination (f) if VEGF is added. Only a slight, inconclusive
decrease in contact guidance and remodeling can be observed in both experiments
(c), (d), (g), (h).
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nation parameter by ≈ 25% and the cell adhesion parameter by ≈ 8%
(Fig. 7 (e), (f)). In both experiments only an insignificant change in the
parameters corresponding to contact guidance of endothelial cells and re-
modeling of the extracellular matrix is observed (Fig. 7 (c), (d), (g), (h)).
Therefore, the influence of VEGF on contact guidance of endothelial cells
and on remodeling of the extra-cellular matrix appears to be negligible. Fur-
thermore, Fig. 7 reveals that our model is more sensitive to changes in the
adhesion and movement coordination parameters compared to changes in
parameters corresponding to contact guidance and remodeling. This addi-
tionally supports the argument that in our model VEGF mainly influences
adhesion and movement coordination.

In summary, we have demonstrated that including only local cell inter-
actions in our model can quantitatively reproduce experimental data. Local
interactions are therefore sufficient for angiogenic network formation in vitro
sprouting assays, i.e. no additional non-local mechanisms, e.g. VEGF gra-
dients, are required.

Our results reveal the effect of VEGF on the interplay of cell interactions
during angiogenesis in vitro sprouting assays. These effects were consistently
found in two independent series of experiments. From the model we infer an
increase in cell adhesion when VEGF is added. Cell adhesion in endothelial
cells is mediated primarily due to adhesive junctions by VE-cadherin [27].
Therefore, in our model there is an increase in the activity of adhesive junc-
tions, i.e. an increase in the activity of VE-cadherin. VEGF is known to
stimulate the production of proteases in endothelial cells, stimulate their mi-
gration and proliferation, and loosen cell–cell contacts though modification
of VE-Cadherin [28, 29, 30]. Our results appear to be partially inconsistent
with these known responses to VEGF. It is important to note, however,
that some of the VEGF effects, notably protease production and loosening
of cell–cell contacts, relate only to the initiation of vascular sprouting, but
not to the extension and branching of the growing sprout. Stalk cells need
to adhere tightly to the tip cell, and to each other, and they do so in the
presence of VEGF. This important aspect has not been appreciated in the
literature so far. Whether VEGF exerts this effect directly or indirectly,
via other endothelial signaling pathways, remains to be investigated. It has
been shown that VEGF induces Notch-Delta signaling, leading to the re-
pression of the tip cell phenotype in stalk cells [8]. It is possible that this
pathway also contributes to the increased cell adhesion that we observe in
our model. From our model we can also infer an increase of movement
coordination when VEGF is added. Besides cell–cell adhesion, movement
coordination also requires coordinated cytoskeletal activity for joint force
generation. The coordination of cell movement vectors, i.e. cell alignment,
is likely communicated by paracrine signaling [23]. Accordingly, the increase
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of movement coordination under VEGF in our model suggests an increase
in the concentration of paracrine signaling molecules under VEGF in the
in vitro assay. However, the exact biological mechanisms of super-cellular
cytoskeletal organization have not been determined so far [23]. In our model
there is no change in the strength of contact guidance when VEGF is added.
Contact guidance of endothelial cells by the extracellular matrix is medi-
ated by integrins [9]. Experimental findings suggest that VEGF promotes
the expression of integrins in activated endothelial cells compared to quies-
cent endothelial cells [31]. This is no contradiction to our result since we
have considered only activated endothelial cells. Seen in this light, we in-
terpret our results to show that additional VEGF does not further increase
the expression of integrin in already activated endothelial cells. From the
model we also cannot deduce any change in the magnitude of extra-cellular
matrix remodeling. Remodeling of the extra-cellular matrix by endothe-
lial cells is mediated by metalloproteinases [10, 11]. Thus, according to our
model there is no significant change in metalloproteinases activity due to
VEGF. This corresponds to the already known fact that VEGF does not in-
duce the expression of members of the proteases family except collagenase.
Furthermore, significant expression of collagenase occurs only at higher con-
centrations of VEGF [30,32].

In future work, we are going to use the existing model to study the
early phase of in vitro angiogenesis under different experimental conditions,
in particular hypoxia. Furthermore, experimental data from later stages
of in vitro angiogenesis and from in vivo experiments will be considered.
An interesting question is if local cell–cell interactions are also sufficient to
explain later stages of angiogenesis. To address this question the model
will be extended accordingly, i.e. lumen formation, cell signaling, space and
time-dependent concentrations of growth factors, and the effects of blood
flow on the developing vessels are going to be explicitly included.
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