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The dynamics of partons, hadrons and strings in relativistic nucleus–
nucleus collisions is analyzed within the novel Parton–Hadron–String Dy-
namics (PHSD) transport approach, which is based on a dynamical quasi-
particle model for partons (DQPM) matched to reproduce recent lattice-
QCD results — including the partonic equation of state — in thermody-
namic equilibrium. The transition from partonic to hadronic degrees of
freedom is described by covariant transition rates for the fusion of quark–
antiquark pairs or three quarks (antiquarks), respectively, obeying flavor
current-conservation, color neutrality as well as energy-momentum conser-
vation. The PHSD approach is applied to nucleus–nucleus collisions from
low SIS to RHIC energies with particular emphasis on strange mesons,
baryons and antibaryons as well as azimuthal asymmetries. The traces of
partonic interactions are found in particular in the elliptic flow of hadrons
with increasing bombarding energy.
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1. Introduction

The ‘Big Bang’ scenario implies that in the first micro-seconds of the
universe the entire state has emerged from a partonic system of quarks,
antiquarks and gluons — a quark-gluon plasma (QGP) — to color neutral
hadronic matter consisting of interacting hadronic states (and resonances) in
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which the partonic degrees of freedom are confined. The nature of confine-
ment and the dynamics of this phase transition has motivated a large com-
munity for several decades and is still an outstanding question of
todays physics. Early concepts of the QGP were guided by the idea of a
weakly interacting system of partons which might be described by perturba-
tive QCD. However, experimental observations at the Relativistic Heavy Ion
Collider (RHIC) indicated that the new medium created in ultrarelativistic
Au+Au collisions is interacting more strongly than hadronic matter and
consequently this concept had to be severely questioned. Moreover, in line
with theoretical studies in Refs. [1, 2, 3] the medium showed phenomena of
an almost perfect liquid of partons [4,5] as extracted from the strong radial
expansion and the scaling of elliptic flow v2(pT) of mesons and baryons with
the number of constituent quarks and antiquarks [4].

The question about the properties of this (nonperturbative) QGP liq-
uid is discussed controversially in the literature and dynamical concepts
describing the formation of color neutral hadrons from colored partons are
scarce. A fundamental issue for hadronization models is the conservation of
4-momentum as well as the entropy problem because by fusion/coalescence
of massless (or low constituent mass) partons to color neutral bound states
of low invariant mass (e.g. pions) the number of degrees of freedom and thus
the total entropy is reduced in the hadronization process. This problem —
a violation of the second law of thermodynamics as well as the conservation
of four-momentum and flavor currents — has been addressed in Ref. [6] on
the basis of the DQPM employing covariant transition rates for the fusion
of ‘massive’ quarks and antiquarks to color neutral hadronic resonances or
strings. In fact, the dynamical studies for an expanding partonic fireball in
Ref. [6] suggest that the latter problems have come to a practical solution.

A consistent dynamical approach — valid also for strongly interacting
systems — can be formulated on the basis of Kadanoff–Baym (KB) equa-
tions [7] or off-shell transport equations in phase-space representation, re-
spectively [7]. In the KB theory the field quanta are described in terms of
dressed propagators with complex selfenergies. Whereas the real part of the
selfenergies can be related to mean-field potentials (of Lorentz scalar, vector
or tensor type), the imaginary parts provide information about the lifetime
and/or reaction rates of time-like ‘particles’ [8]. Once the proper (complex)
selfenergies of the degrees of freedom are known the time evolution of the
system is fully governed by off-shell transport equations (as described in
Refs. [7, 8]). The determination/extraction of complex selfenergies for the
partonic degrees of freedom has been performed before in Ref. [9] by fitting
lattice QCD ‘data’ within the Dynamical QuasiParticle Model (DQPM). In
fact, the DQPM allows for a simple and transparent interpretation of lattice
QCD results for thermodynamic quantities as well as correlators and leads



What Collective Flow Observables Tell Us About the Expansion . . . 209

to effective strongly interacting partonic quasiparticles with broad spectral
functions. For a review on off-shell transport theory and results from the
DQPM in comparison to the lattice QCD we refer the reader to Ref. [8].

The actual implementations in the PHSD transport approach have been
presented in detail in Refs. [10, 11]. Here we present results for transverse
mass spectra and elliptic flow for heavy ion collisions at RHIC energies in
comparison to data from the experimental collaborations.

2. The PHSD approach

The dynamics of partons, hadrons and strings in relativistic nucleus–
nucleus collisions is analyzed here within the Parton–Hadron–String Dynam-
ics approach [12]. In this transport approach the partonic dynamics is based
on Kadanoff–Baym equations for Green functions with self-energies from the
Dynamical QuasiParticle Model (DQPM) [9] which describes QCD proper-
ties in terms of ‘resummed’ single-particle Green functions. In Ref. [13],
the actual three DQPM parameters for the temperature-dependent effective
coupling were fitted to the recent lattice QCD results of Ref. [14]. The latter
lead to a critical temperature Tc ≈ 160MeV which corresponds to a critical
energy density of εc ≈ 0.5GeV/fm3. In PHSD the parton spectral functions
ρj (j = q, q̄, g) are no longer δ-functions in the invariant mass squared as in
conventional cascade or transport models but depend on the parton mass
and width parameters which were fixed by fitting the lattice QCD results
from Ref. [14]. We recall that the DQPM allows one to extract a potential
energy density Vp from the space-like part of the energy-momentum tensor
as a function of the scalar parton density ρs. Derivatives of Vp w.r.t. ρs then
define a scalar mean-field potential Us(ρs) which enters into the equation of
motion for the dynamic partonic quasiparticles. Furthermore, a two-body
interaction strength can be extracted from the DQPM as well from the quasi-
particle width in line with Ref. [3]. The transition from partonic to hadronic
d.o.f. (and vice versa) is described by covariant transition rates for the fusion
of quark–antiquark pairs or three quarks (antiquarks), respectively, obeying
flavor current-conservation, color neutrality as well as energy-momentum
conservation [12, 13]. Since the dynamical quarks and antiquarks become
very massive close to the phase transition, the formed resonant prehadronic
color-dipole states (qq̄ or qqq) are of high invariant mass, too, and sequen-
tially decay to the groundstate meson and baryon octets increasing the total
entropy.

On the hadronic side PHSD includes explicitly the baryon octet and de-
couplet, the 0−- and 1−-meson nonets as well, as selected higher resonances
as in the Hadron–String–Dynamics (HSD) approach [15, 16]. Hadrons of
higher masses (> 1.5GeV in the case of baryons and > 1.3GeV for mesons)
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are treated as ‘strings’ (color-dipoles) that decay to the known (low-mass)
hadrons, according to the JETSET algorithm [17]. Note that PHSD and
HSD merge at low energy density, in particular, below the critical energy
density εc ≈ 0.5GeV/fm3.

The PHSD approach was applied to nucleus–nucleus collisions from
s
1/2
NN ∼ 5 to 200GeV in Refs. [12, 13] in order to explore the space-time
regions of partonic matter. It was found that even central collisions at the
top-SPS energy of

√
sNN = 17.3GeV show a large fraction of nonpartonic,

i.e. hadronic or string-like matter, which can be viewed as a hadronic corona.
This finding implies that neither hadronic nor only partonic models can be
employed to extract physical conclusions in comparing model results with
data.

3. Calculational results and comparison to data

The anisotropy in the azimuthal angle ψ is usually characterized by the
even order Fourier coefficients vn = 〈exp( ı n(ψ−ΨRP))〉, n = 2, 4, . . . , since
for a smooth angular profile the odd harmonics become equal to zero. As
noted above, ΨRP is the azimuth of the reaction plane and the brackets
denote averaging over particles and events. In particular, for the widely
used second order coefficient, denoted as an elliptic flow, we have

v2 = 〈cos(2ψ − 2ΨRP)〉 =

〈
p2

x − p2
y

p2
x + p2

y

〉
, (1)

where px and py are the x and y components of the particle momenta. This
coefficient can be considered as a function of centrality, pseudo-rapidity η
and/or transverse momentum pT. We note that the reaction plane in PHSD
is given by the (x–z) plane with the z-axis in the beam direction.

In Fig. 1 the experimental v2 excitation function in the transient energy
range is compared to the results from the PHSD calculations; HSD model
results are given as well for reference. We note that the centrality selection
and acceptance are the same for the data and models.

We recall that the HSD model has been very successful in describing
heavy-ion spectra and rapidity distributions from SIS to SPS energies. A
detailed comparison of HSD results with respect to a large experimental
data set was reported in Ref. [20] for central Au+Au (Pb+Pb) collisions
from AGS to top SPS energies. Indeed, as shown in Fig. 1 (dashed lines),
HSD is in good agreement with experiment for both data sets at the lower
edge (

√
sNN ∼ 10GeV) but predicts an approximately energy-independent

flow v2 at larger energies and, therefore, does not match the experimental



What Collective Flow Observables Tell Us About the Expansion . . . 211

  [GeV]s
10

210

2
v

0.00

0.02

0.04

0.06

0.08

0.10

0.12 Au + Au, all charged

: 0.751 GeV
T

| < 1, pη3040%, |

PHENIX Preliminary

PHSD

HSD

| < 1ηminbias, |

STAR

PHSD

HSD

t [fm/c]
0 2 4 6 8 10 12 14

p
a

rt
o

n
 e

n
er

g
y

 f
ra

ct
io

n
0.0

0.2

0.4

0.6

0.8

1.0

PHSD: Au + Au

| < 1ηb = 1 fm, |

200 GeV

62 GeV

19 GeV

9 GeV

Fig. 1. Left: Average elliptic flow v2 of charged particles at midrapidity for two
centrality selections calculated within the PHSD (solid curves) and HSD (dashed
curves). The v2 STAR data compilation for minimal bias collisions are taken
from [18] (stars) and the preliminary PHENIX data [19] are plotted by filled cir-
cles. Right: The evolution of the parton fraction of the total energy density at the
mid-pseudorapidity for different collision energies with PHSD.

observations. This behavior is in quite close agreement with another inde-
pendent hadronic model, the UrQMD (Ultra-relativistic Quantum Molecular
Dynamics) [21] (cf. with [18]).

From the above comparison one may conclude that the rise of v2 with
bombarding energy is not due to hadronic interactions and models with par-
tonic d.o.f. have to be addressed. Indeed, the PHSD approach incorporates
the parton medium effects in line with a lattice QCD equation-of-state, as
discussed above, and also includes a dynamic hadronization scheme based
on covariant transition rates. It is seen from Fig. 1 that PHSD performs
better: The elliptic flow v2 from PHSD (solid curve) is fairly in line with
the data from the STAR and PHENIX collaborations and clearly shows the
growth of v2 with the bombarding energy [22].

The increase of v2 is clarified in Fig. 1, where the partonic fraction of the
energy density at mid-pseudorapidity with respect to the total energy density
in the same pseudorapidity interval is shown. We recall that the repulsive
scalar mean-field potential Us(ρs) for partons in the PHSD model leads to
an increase of the flow v2 as compared to that for HSD or PHSD calculations
without partonic mean fields. As follows from Fig. 1, the energy fraction
of the partons substantially grows with increasing bombarding energy while
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the duration of the partonic phase is roughly the same. Thus, the collective
flow v2 provides sensitive information on the presence of partonic degrees of
freedom in relativistic heavy-ion collisions.
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