HIGH $p_{\rm T}$ SUPPRESSION OF Λ AND $K_{\rm s}^0$ IN Pb–Pb COLLISIONS AT $\sqrt{s_{NN}} = 2.76$ TeV WITH ALICE*

SIMONE SCHUCHMANN

for the ALICE Collaboration

Goethe-University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany

(Received January 16, 2012)

The nuclear modification factors R_{AA} and R_{CP} of Λ and K_s^0 in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV measured by the ALICE experiment at the LHC are presented. In central collisions a strong suppression at high $p_{\rm T}$ ($p_{\rm T} \sim 8 \text{ GeV}/c$) with respect to pp collisions is observed similar for Λ and K_s^0 . The $p_{\rm T}$ region below is dominated by an enhancement of Λ over the suppressed K_s^0 . The results are compared to those for charged particles and to Λ from lower collision energies.

DOI:10.5506/APhysPolBSupp.5.355 PACS numbers: 25.75.Bh, 25.75.Dw

1. Introduction

The comparison of transverse momentum spectra from AA collisions to those from pp collisions is of importance for understanding the parton energy loss in the medium created in heavy-ion collisions. Especially, high momentum hadrons are diagnostic means to probe the medium before freezeout via their energy loss due to in-medium interactions since they are expected to be only weakly affected by flow. The relative energy loss can be quantitatively expressed by so-called nuclear modification factors R_{AA} (Eq. (1a)) and R_{CP} (Eq. (1b)) [1]

$$R_{AA} = \frac{1}{\langle N_{\rm bin} \rangle} \frac{(dN/dp_{\rm T})_{AA}}{(dN/dp_{\rm T})_{pp}}, \qquad (1a)$$

$$R_{\rm CP} = \frac{\left\langle N_{\rm bin}^{\rm peripheral} \right\rangle}{\left\langle N_{\rm bin}^{\rm central} \right\rangle} \frac{(dN/dp_{\rm T})_{\rm central}^{AA}}{(dN/dp_{\rm T})_{\rm peripheral}^{AA}}, \qquad (1b)$$

with $\langle N_{\rm bin} \rangle$, number of binary nucleon–nucleon collisions in (central or peripheral) AA collisions.

^{*} Presented at the Conference "Strangeness in Quark Matter 2011", Kraków, Poland, September 18–24, 2011.

In [2] the ALICE Collaboration reported a strong suppression of inclusive charged particles in central Pb–Pb collisions relative to pp at $\sqrt{s_{NN}} = 2.76$ TeV in the region $p_{\rm T} = 6-8$ GeV/c followed by a rise up to $p_{\rm T} = 50$ GeV/c. The modification of the spectra of identified particles and especially the comparison of baryons and mesons may allow to disentangle differences between the energy loss of quarks and gluons. A difference in the modification pattern of baryons and mesons due to enhanced baryon production at intermediate $p_{\rm T}$ ($p_{\rm T} = 2-4$ GeV/c) is commonly referred to as the baryon-to-meson anomaly. In this contribution, the Λ baryon and the $K_{\rm s}^0$ meson are studied in order to give a more detailed view of the parton energy loss at LHC energies.

2. Analysis

The Λ and $K^0_{\rm s}$ are reconstructed employing a topological secondary vertex finder using tracking information from the TPC (Time Projection Chamber) and the ITS (Inner Tracking System). For each $p_{\rm T}$ interval the yields are obtained by integrating over the invariant mass peak after the combinatorial background subtraction. The latter is based on a fit of the background with a polynomial of first and second order excluding the mass peak region. Systematic uncertainties related to the reconstruction efficiency cancel partially in the ratios R_{AA} and R_{CP} . The systematic errors given below are based on a conservative estimate of the uncertainty on the centrality dependence of the reconstruction efficiency. The $p_{\rm T}$ spectra of A are corrected for feed-down using a preliminary centrality and $p_{\rm T}$ dependent estimate of the contribution from Ξ . The uncertainty related to the centrality dependence of this estimate contributes mainly at low $p_{\rm T}$ and is included in the systematic errors of R_{AA} and R_{CP} . The following results are extracted from two centrality classes in Pb–Pb collisions (0–5%, 60–80%) at $\sqrt{s_{NN}} = 2.76$ TeV and from the corresponding pp reference data at $\sqrt{s} = 2.76$ TeV.

3. Results

The $R_{\rm CP}$ for Λ and $K_{\rm s}^0$ of central (0–5%) to peripheral (60–80%) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV are shown in the left panel of Fig. 1. The results of $K_{\rm s}^0$ agree with the $R_{\rm CP}$ of charged kaons and of inclusive charged particles [2] for the whole $p_{\rm T}$ range. Two $p_{\rm T}$ domains can be distinguished for the Λ - $R_{\rm CP}$: at high $p_{\rm T}$ ($p_{\rm T} > 8$ GeV/c) a common modification of Λ and $K_{\rm s}^0$ with charged particles is observed, while at lower the Λ - $R_{\rm CP}$ shows a clear enhancement over the $K_{\rm s}^0$ - $R_{\rm CP}$, which seems to support the conjecture of a baryon-to-meson anomaly, as observed at RHIC (discussed in detail in [3]). In the right panel of Fig. 1 the ALICE results for Λ - $R_{\rm CP}$ are compared to that obtained by the STAR Collaboration for $\Lambda + \overline{\Lambda}$ at $\sqrt{s_{NN}} = 200$ GeV [4]. Within the uncertainties of the measurements, the results for $R_{\rm CP}$ are comparable. It should be mentioned though that the ALICE results indicate that the Λ - $R_{\rm CP}$ enhancement is extended towards higher $p_{\rm T}$.

Fig. 1. The nuclear modification factor $R_{\rm CP}$ of Λ and $K_{\rm s}^0$ between central (0–5%) and peripheral (60–80%) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The boxes around the data points indicate the systematic error for $K_{\rm s}^0$ and Λ . The uncertainty due to the calculation of $\langle N_{\rm bin} \rangle$ is given by the gray boxes at the dotted line. Left panel: For the charged kaons (small filled circles) and the charged particles (filled triangles) only statistical errors are shown. Right panel: the comparison to the measurement for $\Lambda + \overline{\Lambda}$ in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV measured by the STAR Collaboration [4]. The light gray box at unity indicates the error on $\langle N_{\rm bin} \rangle$ for the STAR measurements.

The modification of the Λ and $K_{\rm s}^0 p_{\rm T}$ spectra relative to pp at the same energy is shown in Fig. 2. In order to evaluate the modification, the results are presented together with the R_{AA} of charged particles [2]. The left panel shows R_{AA} for peripheral and the right panel for central collisions, respectively. As already seen in the measurement of $R_{\rm CP}$, the suppression of $K_{\rm s}^0$ is comparable to that of charged particles for the whole $p_{\rm T}$ range, in peripheral as well as in central collisions. In contrast, the Λ are differently suppressed at lower and higher $p_{\rm T}$: in particular only little nuclear modification, $R_{AA} \approx 1$, is observed for Λ at $p_{\rm T} = 2-5$ GeV/c which results in an enhancement of the Λ - R_{AA} over the $K_{\rm s}^0$ - R_{AA} as it is indicated by the $R_{\rm CP}$ results. However, at large $p_{\rm T}$, modification is as strong as for the $K_{\rm s}^0$ - R_{AA} and hence as for that of charged particles.

Considering the R_{AA} of K_s^0 in peripheral events (left panel of Fig. 2), it indicates a nearly constant and a rather moderate but significant suppression of $R_{AA} \approx 0.6$. Due to this moderate $p_{\rm T}$ dependence of both, the Λ and K_s^0 nuclear modification factors for peripheral collisions, R_{AA} is ex-

S. Schuchmann

pected to behave similarly to $R_{\rm CP}$ for central collisions, only being scaled by some factor. This can be seen in the right panel in Fig. 2, where the Λ and $K_{\rm s}^0 - R_{AA}$ for central events is depicted. A strong suppression at high $p_{\rm T}$ with respect to pp collisions is observed for both hadrons which again is similar to the suppression of charged particles. The observation of a compatible suppression of strange and non-strange hadrons can be interpreted as a flavour independent modification at high $p_{\rm T}$. Corresponding results were obtained for D mesons supporting this interpretation [5].

Fig. 2. The nuclear modification factor R_{AA} of K_s^0 and Λ for peripheral (60–80%) Pb–Pb collisions (left panel) and for central (0–5%) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (right panel). Definition of errors as in Fig. 1. In both panels the charged hadron R_{AA} is shown in addition. Vertical error bars indicate the systematic uncertainties and the horizontal ticks show the statistical errors.

Figure 3 shows the comparison of Λ - R_{AA} to the measurements by the STAR Collaboration at $\sqrt{s_{NN}} = 200$ GeV for the mentioned centralities [6]. At LHC energies we observe a much smaller modification than at RHIC energies. Taking into account that the STAR Λ - R_{CP} is compatible to our measurement the significant difference between STAR and ALICE Λ - R_{AA} at $p_{T} \approx 3$ GeV/c may be driven by the pp references rather than by nuclear effects. As the STAR results are limited to the intermediate p_{T} region, no statement on high p_{T} suppression of Λ and K_{s}^{0} with respect to pp collisions from RHIC to LHC energies is possible yet.

Finally, in Fig. 4 the ALICE results for R_{AA} of Λ and K_s^0 and charged pions in central collisions are compared to calculations from the HIJING/BB v2.0 model [7]. In the case of mesons, the results are well described by the model up to $p_T = 10 \text{ GeV}/c$. However, for $\Lambda - R_{AA}$ the calculations exceed the data at high p_T and the calculated maximum is at lower p_T . Hence, the common flavour and strangeness content independent high p_T suppression of Λ and K_s^0 , as seen in the data, is not reproduced by the model.

Fig. 3. The nuclear modification factor R_{AA} of Λ in comparison to the measurement for Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR Collaboration [6]. The left panel shows the result for peripheral (60–80%) and the right panel R_{AA} for central (0–5%) collisions. Definition of errors as in Fig. 1.

Fig. 4. The nuclear modification factor R_{AA} of Λ , K_s^0 and charged pions for central (0–5%) Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV in comparison to HIJING/BB v2.0 model calculations [7]. Definition of errors as in Fig. 1.

4. Summary

We have presented the measurements of the nuclear modification factors of Λ and K_s^0 up to $p_T = 16 \text{ GeV}/c$ in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$. For both particle species a strong suppression at high p_T ($p_T > 8 \text{ GeV}/c$) in central collisions with respect to pp is observed. A similar suppression at high $p_{\rm T}$ of both hadrons is found in the ratio of central-to-peripheral collisions, too. The nuclear modification of Λ and $K_{\rm s}^0$ is compatible with the modification of charged particles at high $p_{\rm T}$. At lower $p_{\rm T}$ ($p_{\rm T} < 5 \,{\rm GeV}/c$) we observe an enhancement of the Λ - R_{AA} with respect to the $K_{\rm s}^0$ - R_{AA} , which can be related to the baryon-to-meson anomaly. While the $R_{\rm CP}$ is similar at RHIC and LHC energies, we find significantly less Λ - R_{AA} enhancement relative to $K_{\rm s}^0$ - R_{AA} at intermediate $p_{\rm T}$ in central and peripheral events, as compared to the STAR results. Regarding the comparison to model calculations with the HIJING/BB v2.0 model, we observe an agreement with our results for $K_{\rm s}^0$ and charged pion R_{AA} , whereas the R_{AA} of Λ is not described by the model.

REFERENCES

- A. Majumder, M. Van Leeuwen, *Prog. Part. Nucl. Phys.* 66, 41 (2011) [arXiv:1002.2206v3 [hep-ph]].
- [2] J. Otwinowski [ALICE Collaboration], J. Phys. G: Nucl. Part. Phys. 38, 124112 (2011).
- [3] I. Belikov [ALICE Collaboration], J. Phys. G: Nucl. Part. Phys. 38, 124078 (2011); P. Kalinak, Acta Phys. Pol. B Proc. Suppl. 5, 219 (2012), this issue.
- [4] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 98, 062301 (2007).
- [5] B. Hippolyte [ALICE Collaboration], to be published in Acta Phys. Pol. B 43 (2012).
- [6] B.I. Abelev et al. [STAR Collaboration], Phys. Rev. C77, 044908 (2008).
- [7] V. Topor Pop, M. Gyulassy, J. Barrette, C. Gale, *Phys. Rev.* C84, 044909 (2011).